-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtinymempool.cpp
327 lines (291 loc) · 12.6 KB
/
tinymempool.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
#include <tinymempool.h>
#include <amap.h>
#include <cmath>
namespace tiny {
bool debug_ancestry = false;
template<typename T>
typename T::const_iterator find_shared_entry(const T& v, const std::shared_ptr<const mempool_entry>& entry) {
return std::find_if(v.begin(), v.end(), [entry](std::shared_ptr<const mempool_entry> const& e) {
return *e == *entry;
});
}
// static int depth = 0;
// struct entrypoint {
// entrypoint() { ++depth; }
// ~entrypoint() { --depth; }
// };
// inline bool check() { return depth == 1; }
void mempool::evict_for_tx(std::shared_ptr<tx> x, std::shared_ptr<const mempool_entry> entry_or_null) {
// printf("*** will confirm %s ***\n", x->ToString().c_str());
if (entry_map.count(x->hash)) return;
// find and evict transactions that conflict with x
std::set<std::shared_ptr<const mempool_entry>> evictees;
if (!x->IsCoinBase()) {
// printf("- locating evictees\n");
for (const auto& in : x->vin) {
bool found = false;
auto prevout = in.prevout;
// printf(" - prevout %s %s\n", prevout.hash.ToString().c_str(), ancestry.count(prevout.hash) ? "found" : "not found");
if (ancestry.count(prevout.hash)) {
for (const auto& candidate : ancestry[prevout.hash]) {
for (const auto& c_in : candidate->x->vin) {
auto c_prevout = c_in.prevout;
if (c_prevout.hash == prevout.hash && c_prevout.n == prevout.n) {
// found a match
// printf(" - evicting %s\n", candidate->x->hash.ToString().c_str());
assert(candidate->x->hash != x->hash);
evictees.insert(candidate);
found = true;
break; // c_in
}
}
if (found) break; // candidate
}
}
}
}
// perform evictions
for (const auto& e : evictees) {
remove_entry(e, entry_or_null.get() ? determine_reason(entry_or_null, e) : MemPoolRemovalReason::CONFLICT, x);
}
}
void mempool::insert_tx(std::shared_ptr<tx> x, bool retain) {
// printf("*** insert %s ***\n", x->ToString().c_str());
// entrypoint _e;
// avoid duplicate insertions
if (entry_map.count(x->hash)) return;
// fetch input amounts
uint64_t in_sum = 0;
bool unknown_inputs = false;
if (!x->IsCoinBase()) {
for (const auto& in : x->vin) {
if (entry_map.count(in.prevout.hash)) {
in_sum += entry_map[in.prevout.hash]->x->vout[in.prevout.n].value;
} else {
auto a = amap::output_amount(in.prevout.hash, in.prevout.n);
if (a == -1) {
unknown_inputs = true;
break;
}
in_sum += a;
}
}
}
// create new entry
std::shared_ptr<const mempool_entry> entry = std::make_shared<const mempool_entry>(x, in_sum, unknown_inputs);
// min feerate check
if (!retain && entry->feerate() < min_feerate) {
// this tx has too low fee so we won't let it in, nor will we evict conflicting txs
++rejections;
return;
}
// would this tx be dropped immediately? if so we don't bother inserting it
if (!retain && (entry_queue.size() + 1 > MAX_ENTRIES || ancestry.size() + x->vin.size() > MAX_REFS)) {
// mempool is full... would we bump out lowest tx?
if (entry->feerate() <= entry_queue[0]->feerate()) {
// we would be bumped out actually; so ignore us
++selfbumps;
return;
}
}
evict_for_tx(x, entry);
entry_map[x->hash] = entry;
// link ancestry
if (!x->IsCoinBase()) {
for (const auto& in : x->vin) {
ancestry[in.prevout.hash].push_back(entry);
}
}
if (callback) {
callback->add_entry(entry);
if (!x->IsCoinBase() && entry->fee() > 100000000ULL) {
fprintf(stderr, "unusually high fee for transaction: %s\n", x->ToString().c_str());
}
}
if (!retain) {
// enqueue for potential removal
enqueue(entry);
}
// if (check() && entry_map.size() > 0) {
// // assert validity
// std::set<uint256> inputs;
// uint32_t max_ins = 0;
// uint64_t sum_ins = 0;
// for (const auto& e : entry_map) {
// if (e.second->x->vin.size() > max_ins) max_ins = e.second->x->vin.size();
// sum_ins += e.second->x->vin.size();
// for (const auto& vin : e.second->x->vin) {
// assert(!vin.prevout.IsNull());
// inputs.insert(vin.prevout.hash);
// }
// }
// printf("ancestry size = %zu, inputs size = %zu; max inputs = %u; tx count = %zu, input sum = %llu, avg in/tx = %.2f\n", ancestry.size(), inputs.size(), max_ins, entry_map.size(), sum_ins, (float)sum_ins / entry_map.size());
// assert(ancestry.size() == inputs.size());
// }
}
void mempool::remove_entry(std::shared_ptr<const mempool_entry> entry, MemPoolRemovalReason reason, std::shared_ptr<tx> cause) {
// printf("*** remove %s ***\n", entry->x->ToString().c_str());
// entrypoint _e;
if (!entry_map.count(entry->x->hash)) return;
if (reason != MemPoolRemovalReason::BLOCK) {
// evict any tx dependent on x
// printf("- remove dependent transactions\n");
while (ancestry.count(entry->x->hash)) {
remove_entry(ancestry[entry->x->hash].back(), reason, cause);
}
}
if (callback) {
callback->remove_entry(entry, reason, cause);
}
// unlink ancestry
if (!entry->x->IsCoinBase()) {
// printf("- unlinking ancestry\n");
for (const auto& in : entry->x->vin) {
assert(ancestry.count(in.prevout.hash));
auto it = find_shared_entry(ancestry[in.prevout.hash], entry);
// std::find_if(ancestry[in.prevout.hash].begin(), ancestry[in.prevout.hash].end(),
// [entry](std::shared_ptr<const mempool_entry> const& e) {
// return *e == *entry;
// });
if (it == ancestry[in.prevout.hash].end()) {
printf("cannot find %s in ancestry[%s]:\n", entry->x->hash.ToString().c_str(), in.prevout.hash.ToString().c_str());
debug_ancestry = true;
find_shared_entry(ancestry[in.prevout.hash], entry);
// std::find_if(ancestry[in.prevout.hash].begin(), ancestry[in.prevout.hash].end(),
// [entry](std::shared_ptr<const mempool_entry> const& e) {
// return *e == *entry;
// });
for (auto it : ancestry[in.prevout.hash]) {
printf("- %s: %s==%s ? %d; e1=e2 ? %d\n", it->x->hash.ToString().c_str(), entry->x->hash.ToString().c_str(), it->x->hash.ToString().c_str(), entry->x->hash == it->x->hash, entry == it);
}
debug_ancestry = false;
printf("(END)\n");
}
assert(it != ancestry[in.prevout.hash].end());
ancestry[in.prevout.hash].erase(it);
if (ancestry[in.prevout.hash].size() == 0) {
// printf(" - ancestry for %s is cleared out, erasing\n", in.prevout.hash.ToString().c_str());
ancestry.erase(in.prevout.hash);
}
}
}
// remove from entry map
entry_map.erase(entry->x->hash);
// remove from entry queue
auto it = find_shared_entry(entry_queue, entry);
if (it != entry_queue.end()) {
entry_queue.erase(it);
}
// if (check() && entry_map.size() > 0) {
// // assert validity
// std::set<uint256> inputs;
// uint32_t max_ins = 0;
// uint64_t sum_ins = 0;
// for (const auto& e : entry_map) {
// if (e.second->x->vin.size() > max_ins) max_ins = e.second->x->vin.size();
// sum_ins += e.second->x->vin.size();
// for (const auto& vin : e.second->x->vin) {
// inputs.insert(vin.prevout.hash);
// }
// }
// printf("ancestry size = %zu, inputs size = %zu; max inputs = %u; tx count = %zu, input sum = %llu, avg in/tx = %.2f\n", ancestry.size(), inputs.size(), max_ins, entry_map.size(), sum_ins, (float)sum_ins / entry_map.size());
// assert(ancestry.size() == inputs.size());
// }
}
void mempool::process_block(int height, uint256 hash, const std::vector<tx>& txs) {
// printf("*** process block %d ***\n", height);
// entrypoint _e;
for (const auto& x : txs) {
if (!entry_map.count(x.hash)) {
if (callback) callback->skipping_mined_tx(std::make_shared<tx>(x));
evict_for_tx(std::make_shared<tx>(x));
}
if (entry_map.count(x.hash)) {
remove_entry(entry_map[x.hash], MemPoolRemovalReason::BLOCK);
}
}
if (callback) callback->push_block(height, hash, txs);
// if (check() && entry_map.size() > 0) {
// // assert validity
// std::set<uint256> inputs;
// uint32_t max_ins = 0;
// uint64_t sum_ins = 0;
// for (const auto& e : entry_map) {
// if (e.second->x->vin.size() > max_ins) max_ins = e.second->x->vin.size();
// sum_ins += e.second->x->vin.size();
// for (const auto& vin : e.second->x->vin) {
// inputs.insert(vin.prevout.hash);
// }
// }
// printf("ancestry size = %zu, inputs size = %zu; max inputs = %u; tx count = %zu, input sum = %llu, avg in/tx = %.2f\n", ancestry.size(), inputs.size(), max_ins, entry_map.size(), sum_ins, (float)sum_ins / entry_map.size());
// assert(ancestry.size() == inputs.size());
// }
}
void mempool::reorg_block(int height) {
if (callback) callback->pop_block(height);
}
bool mempool::is_tx_conflicting(std::shared_ptr<tx> x) {
// find transactions that conflict with x
for (const auto& in : x->vin) {
auto prevout = in.prevout;
if (ancestry.count(prevout.hash)) {
for (const auto& candidate : ancestry[prevout.hash]) {
for (const auto& c_in : candidate->x->vin) {
auto c_prevout = c_in.prevout;
if (c_prevout.hash == prevout.hash && c_prevout.n == prevout.n) {
return true;
}
}
}
}
}
return false;
}
MemPoolRemovalReason mempool::determine_reason(std::shared_ptr<const mempool_entry> added, std::shared_ptr<const mempool_entry> removed) {
// RBF if added has higher fee and spends all inputs spent by removed
// Strictly speaking, this is not perfect but it's a reasonable estimate
int64_t added_w = added->x->GetWeight();
int64_t removed_w = removed->x->GetWeight();
uint64_t added_fee = added->fee();
uint64_t removed_fee = removed->fee();
if (added_fee <= removed_fee) return MemPoolRemovalReason::CONFLICT;
double added_feerate = (double)added_fee / added_w;
double removed_feerate = (double)removed_fee / removed_w;
if (added_feerate <= removed_feerate) return MemPoolRemovalReason::CONFLICT;
std::set<outpoint> spent;
for (const auto& in : removed->x->vin) {
spent.insert(in.prevout);
}
for (const auto& in : added->x->vin) {
if (!spent.count(in.prevout)) return MemPoolRemovalReason::CONFLICT;
}
// absolute fee is higher, feerate is higher, and all inputs in the evicted
// transaction were spent in the new one
return MemPoolRemovalReason::REPLACED;
}
void mempool::enqueue(const std::shared_ptr<const mempool_entry>& entry, bool preserve_size_limits) {
size_t l = 0, r = entry_queue.size(), m = 0;
double in_feerate = entry->feerate();
while (r > l) {
m = l+((r-l)>>1);
double feerate = entry_queue[m]->feerate();
// printf("enqueue FR=%lf ([%zu..%zu]: %zu=%lf)\n", in_feerate, l, r, m, feerate);
if (std::fabs(in_feerate - feerate) < 1) break;
if (in_feerate < feerate) {
// in cheaper, move towards front
r = m;
} else {
// in more expensive, move towards end
l = m + 1;
}
}
// if (entry_queue.size() > m) printf("enqueue FR=%lf: %zu=%lf\n", in_feerate, m, entry_queue[m]->feerate());
entry_queue.insert(entry_queue.begin() + m, entry);
if (preserve_size_limits) {
// do not exceed entry/ref limit
while (entry_queue.size() > MAX_ENTRIES || ancestry.size() > MAX_REFS) {
remove_entry(entry_queue[0], MemPoolRemovalReason::SIZELIMIT);
}
}
}
} // namespace tiny