You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
import pandas as pd
import matplotlib.pyplot as plt
import requests
import websocket
def on_message(ws, message):
# Process the received message
data = json.loads(message)
# Generate trading signals based on the latest market data
make_informed_trading_decision(data)
import pandas as pd
import matplotlib.pyplot as plt
import requests
import websocket
def on_message(ws, message):
# Process the received message
data = json.loads(message)
# Generate trading signals based on the latest market data
make_informed_trading_decision(data)
def on_error(ws, error):
print(f"Error: {error}")
def on_close(ws, code, reason):
print(f"Connection closed: {code} ({reason})")
def on_open(ws):
print("Connection opened")
def make_informed_trading_decision(data):
# Analyze the received market data and generate trading signals
# /storage/emulated/0/Download/BTC_usd.csv
def fibonacci(n):
if n == 0:
return 0
elif n == 1:
return 1
else:
return fibonacci(n - 1) + fibonacci(n - 2)
def retracement_levels(start, end, retrace_percentages):
levels = []
for percentage in retrace_percentages:
level = end - percentage * (end - start)
levels.append(level)
return levels
def get_historical_data(symbol):
data = pd.read_csv('data.csv')
data.set_index('Date', inplace=True)
return data[symbol]
def plot_data_with_retracement_levels(symbol, retrace_percentages):
data = get_historical_data(symbol)
data.plot()
def calculate_retracement_levels(start, end, retrace_percentages):
levels = []
for percentage in retrace_percentages:
level = end - percentage * (end - start)
levels.append(level)
return levels
retracement_levels = calculate_retracement_levels(data.iloc[0]['Close'], data.iloc[-1]['Close'], retrace_percentages)
for level in retracement_levels:
plt.axhline(y=level, color='r', linestyle='--', label=f'{level:.2f}')
def liquid_nero_networking(symbol, start_date, end_date):
# Access the Liquid Nero API to retrieve relevant social sentiment data
api_key = 'YOUR_API_KEY'
endpoint = f'https://api.liquidnero.com/sentiment/{symbol}?start={start_date}&end={end_date}'
headers = {'Authorization': f'Bearer {api_key}'}
def fundamental_analysis(symbol):
# Analyze financial statements, company news, and industry trends
# ...
if name == 'main':
symbol = 'BTC-USD'
The text was updated successfully, but these errors were encountered: