Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Einstein_trade_websocket_bot #26

Open
kalihatreese opened this issue Mar 9, 2024 · 0 comments
Open

Einstein_trade_websocket_bot #26

kalihatreese opened this issue Mar 9, 2024 · 0 comments

Comments

@kalihatreese
Copy link
Owner

import pandas as pd
import matplotlib.pyplot as plt
import requests
import websocket

def on_message(ws, message):
# Process the received message
data = json.loads(message)
# Generate trading signals based on the latest market data
make_informed_trading_decision(data)

def on_error(ws, error):
print(f"Error: {error}")

def on_close(ws, code, reason):
print(f"Connection closed: {code} ({reason})")

def on_open(ws):
print("Connection opened")

def make_informed_trading_decision(data):
# Analyze the received market data and generate trading signals
# /storage/emulated/0/Download/BTC_usd.csv

def fibonacci(n):
if n == 0:
return 0
elif n == 1:
return 1
else:
return fibonacci(n - 1) + fibonacci(n - 2)

def retracement_levels(start, end, retrace_percentages):
levels = []
for percentage in retrace_percentages:
level = end - percentage * (end - start)
levels.append(level)
return levels

def get_historical_data(symbol):
data = pd.read_csv('data.csv')
data.set_index('Date', inplace=True)
return data[symbol]

def plot_data_with_retracement_levels(symbol, retrace_percentages):
data = get_historical_data(symbol)
data.plot()
def calculate_retracement_levels(start, end, retrace_percentages):
levels = []
for percentage in retrace_percentages:
level = end - percentage * (end - start)
levels.append(level)
return levels
retracement_levels = calculate_retracement_levels(data.iloc[0]['Close'], data.iloc[-1]['Close'], retrace_percentages)
for level in retracement_levels:
plt.axhline(y=level, color='r', linestyle='--', label=f'{level:.2f}')

plt.title(f'Historical Data for {symbol} with Fibonacci Retracement Levels')
plt.legend()
plt.show()

def liquid_nero_networking(symbol, start_date, end_date):
# Access the Liquid Nero API to retrieve relevant social sentiment data
api_key = 'YOUR_API_KEY'
endpoint = f'https://api.liquidnero.com/sentiment/{symbol}?start={start_date}&end={end_date}'
headers = {'Authorization': f'Bearer {api_key}'}

response = requests.get(endpoint, headers=headers)
if response.status_code == 200:
    sentiment_data = response.json()
    # Analyze sentiment data and identify potential trading signals
    # ...

def fundamental_analysis(symbol):
# Analyze financial statements, company news, and industry trends
# ...

if name == 'main':
symbol = 'BTC-USD'

# Retrieve historical data and calculate Fibonacci retracement levels
data = get_historical_data(symbol)
retracement_levels = calculate_retracement_levels(data.iloc[0]['Close'], data.iloc[-1]['Close'], [0.236, 0.382, 0.5])

plot_data_with_retracement_levels(symbol, retracement_levels)
liquid_nero_networking(symbol, data.index[0], data.index[-1])
fundamental_analysis(symbol)

# Connect to the WebSocket stream and receive real-time market data
websocket.enableTrace(True)
ws = websocket.WebSocketApp("wss://api.websocket.com/v1/stream", on_message=on_message, on_error=on_error, on_close=on_close)
ws.run_forever()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant