-
Notifications
You must be signed in to change notification settings - Fork 128
/
Copy pathmiller_rabin.py
94 lines (79 loc) · 2.79 KB
/
miller_rabin.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import logging
import os
import sys
from math import gcd
from sage.all import is_prime
from sage.all import kronecker
from sage.all import next_prime
path = os.path.dirname(os.path.dirname(os.path.dirname(os.path.realpath(os.path.abspath(__file__)))))
if sys.path[1] != path:
sys.path.insert(1, path)
from shared.crt import fast_crt
def _generate_s(A, k):
S = []
for a in A:
# Possible non-residues mod 4a of potential primes p
Sa = set()
for p in range(1, 4 * a, 2):
if kronecker(a, p) == -1:
Sa.add(p)
# Subsets of Sa that meet the intersection requirement
Sk = []
for ki in k:
assert gcd(ki, 4 * a) == 1
Sk.append({pow(ki, -1, 4 * a) * (s + ki - 1) % (4 * a) for s in Sa})
S.append(Sa.intersection(*Sk))
return S
# Brute forces a combination of residues from S by backtracking
# X already contains the remainders mod each k
# M already contains each k
def _backtrack(S, A, X, M, i):
if i == len(S):
return fast_crt(X, M)
M.append(4 * A[i])
for za in S[i]:
X.append(za)
try:
fast_crt(X, M)
z, m = _backtrack(S, A, X, M, i + 1)
if z is not None and m is not None:
return z, m
except ValueError:
pass
X.pop()
M.pop()
return None, None
def generate_pseudoprime(A, k2=None, k3=None, min_bit_length=0):
"""
Generates a pseudoprime of the form p1 * p2 * p3 which passes the Miller-Rabin primality test for the provided bases.
More information: R. Albrecht M. et al., "Prime and Prejudice: Primality Testing Under Adversarial Conditions"
:param A: the bases
:param k2: the k2 value (default: next_prime(A[-1]))
:param k3: the k3 value (default: next_prime(k2))
:param min_bit_length: the minimum bit length of the generated pseudoprime (default: 0)
:return: a tuple containing the pseudoprime n, as well as its 3 prime factors
"""
A.sort()
if k2 is None:
k2 = int(next_prime(A[-1]))
if k3 is None:
k3 = int(next_prime(k2))
while True:
logging.info(f"Trying {k2 = } and {k3 = }...")
X = [pow(-k3, -1, k2), pow(-k2, -1, k3)]
M = [k2, k3]
S = _generate_s(A, M)
logging.info(f"{S = }")
z, m = _backtrack(S, A, X, M, 0)
if z and m:
logging.info(f"Found residue {z} and modulus {m}")
i = (2 ** (min_bit_length // 3)) // m
while True:
p1 = int(z + i * m)
p2 = k2 * (p1 - 1) + 1
p3 = k3 * (p1 - 1) + 1
if is_prime(p1) and is_prime(p2) and is_prime(p3):
return p1 * p2 * p3, p1, p2, p3
i += 1
else:
k3 = int(next_prime(k3))