-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathes94ap.m
102 lines (88 loc) · 2.89 KB
/
es94ap.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
function [p,q,Rs] = es94ap(R, varargin)
% p = es94ap(R);
%
% Autopick subtractive "ratio" time-series R with method modified from
% Earle and Shearer (1994). For multichannel data, R can be a matrix with
% per-channel values in column vectors.
% The first pick of each channel k is returned as p(k).
%
% p = es94ap(R,nh);
% Specify hanning window length, nh, in samples. Default = 30.
%
% [p,q] = es94ap(R);
% Also return a quality q for the pick, equal to the value of the first
% local maximum.
%
% [p,q,Rs] = es94ap(R);
% Also return the smoothed ratio time series Rs.
%
% Description
% 1.) At each channel k, smooth (lowpass) R(:,k) by filtering with a
% Hanning window.
% 2.) If max(Rs) > 0, determine first local maximum tm1 in Rs.
% 3.) From the first positive value of Rs to xm1, search for the last
% inflection point in Rs *before* tm1. This is the pick.
%
% Non-Canonical Behavior
% Unlike the original algorithm, we look first for upward inflection
% points, indicating sharp increases in Rs.
%
% ========================================================================
% Author: Joshua Jones, [email protected]
% Version: 1.0, 2016-02-29
% Defaults
nh = 30; % Length of Hanning window
% Parse varargin
if numel(varargin) > 0
if ~isempty(varargin{1})
nh = varargin{1};
end
end
K = size(R,2);
Rs = hannfilt(R, nh);
% Initialize p, q to always return a value, even a null one.
p = zeros(1,K);
q = p;
% Channel loop begins
for k = 1:1:K
p(k) = 0;
% Find t1 == first point where smoothed r exceeds 0.
t1 = find(Rs(:,k)>0,1,'first');
if ~isempty(t1)
% Take diff; time now begins at t1+1
rd1 = diff(Rs(t1:end,k));
% Find tm1 == first maximum in xs
tm1 = find(rd1(2:end)<0 & rd1(1:end-1)>0,1,'first');
% Does a maximum exist?
if ~isempty(tm1)
% Save as a measure of quality
q(k) = Rs(tm1+1,k);
% From t1 to tm1, compute xd2 = diff(xd1(t1:tm1));
rd2 = diff(rd1(1:tm1));
% Get last upward inflection point before tm1
[~,p1] = find(rd2(2:end)<0 & rd2(1:end-1)>0,1,'last');
if isempty(p1)
[~,p1] = find(rd2(2:end)>0 & rd2(1:end-1)<0,1,'last');
end
if numel(p1)
p(k) = 2 + t1 + p1;
end
end
end
clear t1 tm1;
end
% =======================================================================
function xs = hannfilt(x, nh)
% Xs = hannfilt(X, nh);
%
% Smooth vector or matrix of column vectors X by convolving with length
% nh hanning filter. nh is optional; default is 30 samples.
nx = size(x,1);
hf = 0.5*(1-cos(2*pi.*(0:1:nh-1)/(nh-1)));
hf = hf./sum(hf);
hfo = numel(hf)-1;
if nx <= 3*hfo
x(nx+1:1+3*hfo,:) = 0;
end
xs = filtfilt(hf,1,x);
xs = xs(1:nx,:);