This repository has been archived by the owner on Nov 19, 2017. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTeuwen-GaussianMF.bib
147 lines (135 loc) · 6.15 KB
/
Teuwen-GaussianMF.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
@article{MaasNeervenPortal2011,
abstract = {We introduce a technique for handling Whitney decompositions in Gaussian harmonic analysis and apply it to the study of Gaussian analogues of the classical tent spaces $T^{1, q}$ of Coifman–Meyer–Stein.},
author = {Maas, Jan and van Neerven, Jan and Portal, Pierre},
doi = {10.1007/s11512-010-0143-z},
issn = {0004-2080},
journal = {Arkiv f\"{o}r Matematik},
keywords = {Gaussian,Mathematics and Statistics,Whitney,measure,tent},
month = apr,
number = {2},
pages = {379--395},
publisher = {Springer Netherlands},
title = {{Whitney coverings and the tent spaces $T^{1,q}(\gamma)$ for the Gaussian measure}},
volume = {50},
year = {2011}
}
@article{MaasNeervenPortal2011b,
abstract = {We study, in \$L\^{}\{1\}(\backslash R\^{}n;\backslash gamma)\$ with respect to the gaussian measure, non-tangential maximal functions and conical square functions associated with the Ornstein-Uhlenbeck operator by developing a set of techniques which allow us, to some extent, to compensate for the non-doubling character of the gaussian measure. The main result asserts that conical square functions can be controlled in \$L\^{}1\$-norm by non-tangential maximal functions. Along the way we prove a change of aperture result for the latter. This complements recent results on gaussian Hardy spaces due to Mauceri and Meda.},
archivePrefix = {arXiv},
arxivId = {1003.4092},
author = {Maas, Jan and van Neerven, Jan and Portal, Pierre},
eprint = {1003.4092},
journal = {Publicacions Matem\`{a}tiques},
keywords = {and phrases,ganisation for scientific research,gaussian measure,hardy spaces,is supported by rubicon,is supported by vici,maximal function,netherlands or-,nwo,ornstein-uhlenbeck operator,square function,subsidy,subsidy 680-50-0901 of the,the first named author,the second named author},
month = mar,
number = {2},
pages = {21},
publisher = {Universitat Aut\`{o}noma de Barcelona, Departament de Matem\`{a}tiques},
title = {{Non-tangential maximal functions and conical square functions with respect to the Gaussian measure}},
url = {http://projecteuclid.org/euclid.pm/1308748950},
volume = {55},
year = {2010}
}
@article{Pineda2008,
author = {Pineda, Ebner and Urbina, Wilfredo R.},
issn = {1315-2068},
journal = {Divulgaciones Matem\'{a}ticas},
keywords = {hermite expansions,non tangential convergence,ornstein-uhlenbeck,poisson-hermite semigroup,uhlenbeck semigroup},
number = {2},
pages = {1--19},
title = {{Non Tangential Convergence for the Ornstein-Uhlenbeck Semigroup}},
url = {http://www.emis.ams.org/journals/DM/v16-1/art7.pdf},
volume = {13},
year = {2008}
}
@article{Portal2014,
abstract = {Building on the author's recent work with Jan Maas and Jan van Neerven, this paper establishes the equivalence of two norms (one using a maximal function, the other a square function) used to define a Hardy space on $\R^{n}$ with the gaussian measure, that is adapted to the Ornstein-Uhlenbeck semigroup. In contrast to the atomic Gaussian Hardy space introduced earlier by Mauceri and Meda, the $h^{1}(\R^{n};d\gamma)$ space studied here is such that the Riesz transforms are bounded from $h^{1}(\R^{n};d\gamma)$ to $L^{1}(\R^{n};d\gamma)$. This gives a gaussian analogue of the seminal work of Fefferman and Stein in the case of the Lebesgue measure and the usual Laplacian.},
author = {Portal, Pierre},
journal = {Revista Matem\'{a}tica Iberoamericana},
title = {{Maximal and quadratic Gaussian Hardy spaces}},
number = {1},
volume = {30},
pages = {79--108}
keywords = {Hardy,gaussian,ornstein,uhlenbeck},
month = mar,
year = {2014},
}
@article{Sjogren1983,
author = {Sj\"{o}gren, Peter},
doi = {10.2307/2374340},
issn = {00029327},
journal = {American Journal of Mathematics},
month = oct,
number = {5},
pages = {1231--1233},
title = {{A Remark on the Maximal Function for Measures in $\mathbf{R}^n$}},
volume = {105},
year = {1983}
}
@article{Sjogren1997,
author = {Sj\"{o}gren, Peter},
doi = {10.1007/BF02656487},
issn = {1069-5869},
journal = {The Journal of Fourier Analysis and Applications},
keywords = {hermite,ornstein-uhlenbeck},
month = jan,
number = {S1},
pages = {813--823},
publisher = {Birkh\"{a}user Boston},
title = {{Operators associated with the Hermite semigroup -- a survey}},
url = {http://link.springer.com/10.1007/BF02656487},
volume = {3},
year = {1997}
}
@article{Mauceri2007,
author = {Mauceri, Giancarlo and Meda, Stefano},
doi = {10.1016/j.jfa.2007.06.017},
issn = {00221236},
journal = {Journal of Functional Analysis},
keywords = {a,analisi armonica,analisi tempo-frequenza e,and the progetto cofinanziato,atomic hardy space,bmo,corresponding author,gauss measure,imaginary powers,laplaciani generalizzati,m,n,p,prin2005,project,riesz transform,singular integrals,teoria delle rappresentazioni,the italian g,work partially supported by},
month = nov,
number = {1},
pages = {278--313},
title = {{BMO and $H^1$ for the Ornstein–Uhlenbeck operator}},
url = {http://linkinghub.elsevier.com/retrieve/pii/S0022123607002613},
volume = {252},
year = {2007}
}
@book {Stein1993,
AUTHOR = {Stein, Elias M.},
TITLE = {Harmonic analysis: real-variable methods, orthogonality, and
oscillatory integrals},
SERIES = {Princeton Mathematical Series},
VOLUME = {43},
NOTE = {With the assistance of Timothy S. Murphy,
Monographs in Harmonic Analysis, III},
PUBLISHER = {Princeton University Press},
ADDRESS = {Princeton, NJ},
YEAR = {1993},
PAGES = {xiv+695},
ISBN = {0-691-03216-5},
MRCLASS = {42-02 (35Sxx 43-02 47G30)},
MRNUMBER = {1232192 (95c:42002)},
MRREVIEWER = {Michael Cowling},
}
@book{Mattila1995,
address = {Cambridge},
author = {Mattila, Pertti},
doi = {10.1017/CBO9780511623813},
isbn = {9780511623813},
pmid = {3487781},
publisher = {Cambridge University Press},
title = {{Geometry of Sets and Measures in Euclidean Spaces}},
year = {1995}
}
@article{Liliana2002,
author = {L. Forzani and R. Scotto and P. Sj\"{o}gren and W. Urbina},
doi = {10.1090/S0002-9939-01-06156-1},
journal = {Proceedings of the American Mathematical Society},
mendeley-groups = {Mathematics},
number = {1},
pages = {73--79},
title = {{On the $L^p$ boundedness of the non-centered Gaussian Hardy-Littlewood maximal function}},
volume = {130},
year = {2002}
}