-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathtrain_model.py
executable file
·192 lines (164 loc) · 7.15 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
#!/usr/bin/env python3
from __future__ import print_function
import numpy as np
# np.random.seed(1337) # for reproducibility
# SEED = 1337
import os
import ast
import pickle
import configparser
from time import localtime, strftime
from optparse import OptionParser
import keras
from keras.datasets import mnist
from keras.utils import np_utils
from keras import backend as K
from keras.optimizers import SGD
from bird.models.cuberun import CubeRun
from bird.models.resnet import ResNetBuilder
from bird.generators.sound import SoundDataGenerator
# Setup Callbacks for History
class HistoryCollector(keras.callbacks.Callback):
def __init__(self, name):
self.name = name
self.data = []
def on_epoch_end(self, batch, logs={}):
self.data.append(logs.get(self.name))
def train_model(config_file, weight_file_path, history_file_path, first_epoch, lock_file):
config_parser = configparser.ConfigParser()
config_parser.read(config_file)
# model
batch_size = int(config_parser['MODEL']['BatchSize'])
nb_classes = int(config_parser['MODEL']['NumberOfClasses'])
nb_epoch = int(config_parser['MODEL']['NumberOfEpochs'])
nb_iterations = int(config_parser['MODEL']['NumberOfIterations'])
nb_val_samples = int(config_parser['MODEL']['NumberOfValidationSamplesPerEpoch'])
samples_per_epoch = int(config_parser['MODEL']['NumberOfTrainingSamplesPerEpoch'])
input_shape = ast.literal_eval(config_parser['MODEL']['InputShape'])
model_name = config_parser['MODEL']['ModelName']
audio_mode = config_parser['MODEL']['InputDataMode']
# paths
noise_path = config_parser['PATHS']['NoiseDataDir']
train_path = config_parser['PATHS']['TrainingDataDir']
valid_path = config_parser['PATHS']['ValidationDataDir']
# training
optimizer = config_parser['TRAINING']['Optimizer']
learning_rate = float(config_parser['TRAINING']['LearningRate'])
decay = float(config_parser['TRAINING']['Decay'])
momentum = float(config_parser['TRAINING']['Momentum'])
nesterov = config_parser['TRAINING']['Nesterov'] == 'True'
loss_function = config_parser['TRAINING']['LossFunction']
time_shift = config_parser['TRAINING']['TimeShiftAugmentation'] == 'True'
pitch_shift = config_parser['TRAINING']['PitchShiftAugmentation'] == 'True'
same_class_augmentation = config_parser['TRAINING']['SameClassAugmentation'] == 'True'
noise_augmentation = config_parser['TRAINING']['NoiseAugmentation'] == 'True'
img_rows, img_cols, nb_channels = input_shape
model = None
if model_name == 'cuberun':
model = CubeRun(nb_classes, input_shape)
elif model_name == 'resnet_18':
model = ResNetBuilder.build_resnet_18(input_shape, nb_classes)
elif model_name == 'resnet_34':
model = ResNetBuilder.build_resnet_34(input_shape, nb_classes)
elif model_name == 'resnet_50':
model = ResNetBuilder.build_resnet_50(input_shape, nb_classes)
elif model_name == 'resnet_101':
model = ResNetBuilder.build_resnet_101(input_shape, nb_classes)
elif model_name == 'resnet_152':
model = ResNetBuilder.build_resnet_152(input_shape, nb_classes)
else:
raise ValueError("Can not find model ", model_name, ".")
if optimizer == 'sgd':
sgd = SGD(lr=learning_rate, decay=decay, momentum=momentum,
nesterov=nesterov)
model.compile(loss=loss_function,
optimizer=sgd,
metrics=['accuracy'])
else:
model.compile(loss=loss_function,
optimizer=optimizer,
metrics=['accuracy'])
if first_epoch=='False':
# load weights
model.load_weights(weight_file_path)
print("loading weigths from: " + weight_file_path)
else:
print("using initial weights")
# Callback history collectors
trainLossHistory = HistoryCollector('loss')
validLossHistory = HistoryCollector('val_loss')
trainAccHistory = HistoryCollector('acc')
validAccHistory = HistoryCollector('val_acc')
best_weight_file_path = os.path.join(os.path.dirname(weight_file_path), "best_weights.h5")
checkpoint = keras.callbacks.ModelCheckpoint(best_weight_file_path,
monitor='val_acc', verbose=0,
save_best_only=True,
save_weights_only=True,
mode='auto')
# train data generator
train_datagen = SoundDataGenerator(
rescale=1./255,
time_shift=time_shift,
pitch_shift=pitch_shift,
augment_with_same_class=same_class_augmentation,
augment_with_noise=noise_augmentation)
# validation data generator
valid_datagen = SoundDataGenerator(
rescale=1./255)
# Generator for training data
print("Loading training data...")
train_generator = train_datagen.flow_from_directory(
train_path,
noise_path,
target_size=(img_rows, img_cols),
batch_size=batch_size,
class_mode='categorical',
audio_mode=audio_mode
#save_to_dir='./visuals/augmented_samples'
)
# Generator for validation data
print("Loading validation data...")
valid_generator = valid_datagen.flow_from_directory(
valid_path,
noise_path,
target_size=(img_rows, img_cols),
batch_size=batch_size,
class_mode='categorical',
audio_mode=audio_mode
#save_to_dir='./visuals/validation_samples',
)
# Fit model to generated training data
model.fit_generator(
train_generator,
samples_per_epoch=samples_per_epoch,
nb_epoch=nb_epoch,
validation_data=valid_generator,
nb_val_samples=nb_val_samples,
callbacks=[trainLossHistory, validLossHistory, trainAccHistory,
validAccHistory, checkpoint])
# save the weights
model.save_weights(weight_file_path)
print (strftime("%a, %d %b %Y %H:%M:%S +0000", localtime()))
print ("The weights have been saved in: " + weight_file_path)
# save history to file
with open(history_file_path, 'wb') as output:
pickle.dump(trainLossHistory.data, output, pickle.HIGHEST_PROTOCOL)
pickle.dump(validLossHistory.data, output, pickle.HIGHEST_PROTOCOL)
pickle.dump(trainAccHistory.data, output, pickle.HIGHEST_PROTOCOL)
pickle.dump(validAccHistory.data, output, pickle.HIGHEST_PROTOCOL)
print ("The history has been saved in: " + history_file_path)
os.remove(lock_file)
return weight_file_path
parser = OptionParser()
parser.add_option("--config_file", dest="config_file")
parser.add_option("--history_path", dest="history_path")
parser.add_option("--weight_path", dest="weight_path")
parser.add_option("--first_epoch", dest="first_epoch")
parser.add_option("--lock_file", dest="lock_file")
(options, args) = parser.parse_args()
config_file = options.config_file
history_file_path = options.history_path
weight_file_path = options.weight_path
first_epoch = options.first_epoch
lock_file = options.lock_file
train_model(config_file, weight_file_path, history_file_path, first_epoch, lock_file)