-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRootRhizoFigures.R
413 lines (373 loc) · 18.2 KB
/
RootRhizoFigures.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
# Plant health data for generational experimental design.
#Joanna Colovas 04/06/2022
#importing the correct libraries for the script and ANOVA analyses
library(tidyverse)
library(multcompView)
#import dataset into R
RootHealth <- read_csv("~/OneDrive - Michigan State University/20220406_Root_Metadata_Health.csv")
#filter entire dataset to Gen 1 vs Gen 2
Gen1 <- filter(RootHealth, generation == 1)
Gen1
Gen2 <- filter(RootHealth, generation == 2)
Gen2
#Plot colors array
ConditionColors <- c("#0197F6", "#F9A602", "#03AC13")
#Gen2Colors <- c("#0197F6","#0197F6","#0197F6", "#FFE800","#FFE800","#FFE800", "#03AC13", "#03AC13","#03AC13")
#Gen1Conditions <- c("Control", "Drought", "Nutrient")
#Gen2Conditions <- c("Control", "Control", "Control", "Drought", "Drought", "Drought", "Nutrient", "Nutrient", "Nutrient")
#set working directory
setwd("~/OneDrive - Michigan State University/RootRhizoFigures")
##SHOOT##
#shoot G1 differences by ANOVA, and differences between groups by Tukey test
#ANOVA test 1 way
ShootGen1ANOVA <- aov(dry.shoot.weight_g ~ condition, data = Gen1)
summary(ShootGen1ANOVA)
#Tukey Test for differences
ShootGen1Tukey <- TukeyHSD(ShootGen1ANOVA)
print(ShootGen1Tukey)
#add letters for significance, same lettered groups are alike
ShootSigDiffs1 <- multcompLetters4(ShootGen1ANOVA, ShootGen1Tukey)
print(ShootSigDiffs1)
ShootSigDiffsTable1 <- group_by(Gen1, condition ) %>%
summarize( mean = mean(na.rm = TRUE, dry.shoot.weight_g)) %>%
arrange(desc(mean))
print(ShootSigDiffsTable1)
ShootSigDiffs1 <- as.data.frame.list(ShootSigDiffs1$condition)
ShootSigDiffsTable1$ShootSigDiffs1 <- ShootSigDiffs1
print(ShootSigDiffsTable1)
#shoot G2 differences by ANOVA, and differences between groups by Tukey test
#ANOVA test 1 way
ShootGen2ANOVA <- aov(dry.shoot.weight_g ~ combocondition, data = Gen2)
summary(ShootGen2ANOVA)
#Tukey Test for differences
ShootGen2Tukey <- TukeyHSD(ShootGen2ANOVA)
print(ShootGen2Tukey)
#add letters for significance
ShootSigDiffs2 <- multcompLetters4(ShootGen2ANOVA, ShootGen2Tukey)
print(ShootSigDiffs2)
ShootSigDiffsTable2 <- group_by(Gen2, combocondition ) %>%
summarize( mean = mean(na.rm = TRUE, dry.shoot.weight_g)) %>%
arrange(desc(mean))
print(ShootSigDiffsTable2)
ShootSigDiffs2 <- as.data.frame.list(ShootSigDiffs2$combocondition)
ShootSigDiffsTable2$ShootSigDiffs2 <- ShootSigDiffs2
print(ShootSigDiffsTable2)
#Shoot Biomass gen 1 and gen 2 boxplots
ShootGen1Biomass <- ggplot(data = Gen1, show.legend= TRUE) +
geom_boxplot(na.rm = TRUE, mapping = aes(x = condition, y = dry.shoot.weight_g, color = condition)) +
scale_color_manual(values = ConditionColors,
name = "Condition") +
labs (title = "Generation 1 Shoot Biomass",
y= "Dry Shoot Weight(g)",
x = "Experimental Condition\n N=5 per group",
subtitle = "Letters indicate significant differences at p < 0.01\n1-way ANOVA, Tukey's Test") +
geom_text(data=ShootSigDiffsTable1, aes(condition, 4, label = ShootSigDiffs1$Letters))
ShootGen1Biomass
ggsave("ShootGen1Biomass.png", width = 5, height = 5, dpi = 1000)
ShootGen2Biomass <- ggplot(data = Gen2, show.legend= TRUE) +
geom_boxplot(na.rm = TRUE, mapping = aes(x = combocondition, y = dry.shoot.weight_g, color = condition)) +
scale_color_manual(values = ConditionColors,
name = "Parent Plant Condition\nDuring Generation 1" ) +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) +
labs (title = "Generation 2 Shoot Biomass",
y= "Dry Shoot Weight(g)",
x = "Compounded Experimental Condition\n N=12 per group",
subtitle = "Letters indicate significant differences at p < 0.01\n1-way ANOVA, Tukey's Test") +
geom_text(data=ShootSigDiffsTable2, aes(combocondition, 1, label = ShootSigDiffs2$Letters))
ShootGen2Biomass
ggsave("ShootGen2Biomass.png", width = 5, height = 5, dpi = 1000)
##ROOT##
#Root G1 differences by ANOVA, and differences between groups by Tukey test
#ANOVA test 1 way
RootGen1ANOVA <- aov(dry.root.weight_g ~ condition, data = Gen1)
summary(RootGen1ANOVA)
#Tukey Test for differences
RootGen1Tukey <- TukeyHSD(RootGen1ANOVA)
print(ShootGen1Tukey)
#add letters for significance, same lettered groups are alike
RootSigDiffs1 <- multcompLetters4(RootGen1ANOVA, RootGen1Tukey)
print(RootSigDiffs1)
RootSigDiffsTable1 <- group_by(Gen1, condition ) %>%
summarize( mean = mean(na.rm = TRUE, dry.root.weight_g)) %>%
arrange(desc(mean))
print(RootSigDiffsTable1)
RootSigDiffs1 <- as.data.frame.list(RootSigDiffs1$condition)
RootSigDiffsTable1$RootSigDiffs1 <- RootSigDiffs1
print(RootSigDiffsTable1)
#shoot G2 differences by ANOVA, and differences between groups by Tukey test
#ANOVA test 1 way
RootGen2ANOVA <- aov(dry.root.weight_g ~ combocondition, data = Gen2)
summary(RootGen2ANOVA)
#Tukey Test for differences
RootGen2Tukey <- TukeyHSD(RootGen2ANOVA)
print(RootGen2Tukey)
#add letters for significance
RootSigDiffs2 <- multcompLetters4(RootGen2ANOVA, RootGen2Tukey)
print(RootSigDiffs2)
RootSigDiffsTable2 <- group_by(Gen2, combocondition ) %>%
summarize( mean = mean(na.rm = TRUE, dry.root.weight_g)) %>%
arrange(desc(mean))
print(RootSigDiffsTable2)
RootSigDiffs2 <- as.data.frame.list(RootSigDiffs2$combocondition)
RootSigDiffsTable2$RootSigDiffs2 <- RootSigDiffs2
print(RootSigDiffsTable2)
#Root Biomass gen 1 and gen 2 boxplots
RootGen1Biomass <- ggplot(data = Gen1, show.legend= TRUE) +
geom_boxplot(na.rm = TRUE, mapping = aes(x = condition, y = dry.root.weight_g, color = condition)) +
scale_color_manual(values = ConditionColors,
name = "Condition") +
labs (title = "Generation 1 Root Biomass",
y= "Dry Root Weight(g)",
x = "Experimental Condition\n N=5 per group",
subtitle = "Letters indicate significant differences at p < 0.01\n1-way ANOVA, Tukey's Test") +
geom_text(data=RootSigDiffsTable1, aes(condition, 2, label = RootSigDiffs1$Letters))
RootGen1Biomass
ggsave("RootGen1Biomass.png", width = 5, height = 5, dpi = 1000)
RootGen2Biomass <- ggplot(data = Gen2, show.legend= TRUE) +
geom_boxplot(na.rm = TRUE, mapping = aes(x = combocondition, y = dry.root.weight_g, color = condition)) +
scale_color_manual(values = ConditionColors,
name = "Parent Plant Condition\nDuring Generation 1" ) +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) +
labs (title = "Generation 2 Root Biomass",
y= "Dry Root Weight(g)",
x = "Compounded Experimental Condition\n N=12 per group",
subtitle = "Letters indicate significant differences at p < 0.01\n1-way ANOVA, Tukey's Test") +
geom_text(data=RootSigDiffsTable2, aes(combocondition, 0.5, label = RootSigDiffs2$Letters))
RootGen2Biomass
ggsave("RootGen2Biomass.png", width = 5, height = 5, dpi = 1000)
##POD NUMBER##
#Pod num G1 differences by ANOVA, and differences between groups by Tukey test
#ANOVA test 1 way
PodGen1ANOVA <- aov(pod_number ~ condition, data = Gen1)
summary(PodGen1ANOVA)
#Tukey Test for differences
PodGen1Tukey <- TukeyHSD(PodGen1ANOVA)
print(PodGen1Tukey)
#add letters for significance, same lettered groups are alike
PodSigDiffs1 <- multcompLetters4(PodGen1ANOVA, PodGen1Tukey)
print(PodSigDiffs1)
PodSigDiffsTable1 <- group_by(Gen1, condition ) %>%
summarize( mean = mean(na.rm = TRUE, pod_number)) %>%
arrange(desc(mean))
print(PodSigDiffsTable1)
PodSigDiffs1 <- as.data.frame.list(PodSigDiffs1$condition)
PodSigDiffsTable1$PodSigDiffs1 <- PodSigDiffs1
print(PodSigDiffsTable1)
#pod count G2 differences by ANOVA, and differences between groups by Tukey test
#ANOVA test 1 way
PodGen2ANOVA <- aov(pod_number ~ combocondition, data = Gen2)
summary(PodGen2ANOVA)
#Tukey Test for differences
PodGen2Tukey <- TukeyHSD(PodGen2ANOVA)
print(PodGen2Tukey)
#add letters for significance
PodSigDiffs2 <- multcompLetters4(PodGen2ANOVA, PodGen2Tukey)
print(PodSigDiffs2)
PodSigDiffsTable2 <- group_by(Gen2, combocondition ) %>%
summarize( mean = mean(na.rm = TRUE, pod_number)) %>%
arrange(desc(mean))
print(PodSigDiffsTable2)
PodSigDiffs2 <- as.data.frame.list(PodSigDiffs2$combocondition)
PodSigDiffsTable2$PodSigDiffs2 <- PodSigDiffs2
print(PodSigDiffsTable2)
#PodNumber gen 1 and 2 box plots
PodNumGen1 <- ggplot(data = Gen1, show.legend= TRUE) +
geom_boxplot(na.rm = TRUE, mapping = aes(x = condition, y = pod_number, color = condition)) +
scale_color_manual(values = ConditionColors,
name = "Condition") +
labs (title = "Generation 1 Pod Count",
y= "Pod Count",
x = "Experimental Condition\n N=5 per group",
subtitle = "Letters indicate significant differences at p < 0.01\n1-way ANOVA, Tukey's Test") +
geom_text(data=PodSigDiffsTable1, aes(condition, 2, label = PodSigDiffs1$Letters))
PodNumGen1
ggsave("PodNumGen1.png", width = 5, height = 5, dpi = 1000)
PodNumGen2 <- ggplot(data = Gen2, show.legend= TRUE) +
geom_boxplot(na.rm = TRUE, mapping = aes(x = combocondition, y = pod_number, color = condition)) +
scale_color_manual(values = ConditionColors,
name = "Parent Plant Condition\nDuring Generation 1" ) +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) +
labs (title = "Generation 2 Pod Count",
y= "Pod Count",
x = "Compounded Experimental Condition\n N=12 per group",
subtitle = "Letters indicate significant differences at p < 0.01\n1-way ANOVA, Tukey's Test") +
geom_text(data=PodSigDiffsTable2, aes(combocondition, 0.5, label = PodSigDiffs2$Letters))
PodNumGen2
ggsave("PodNumGen2.png", width = 5, height = 5, dpi = 1000)
##SEED NUMBER##
#seed num G1 differences by ANOVA, and differences between groups by Tukey test
#ANOVA test 1 way
SeedGen1ANOVA <- aov(seed_number ~ condition, data = Gen1)
summary(SeedGen1ANOVA)
#Tukey Test for differences
SeedGen1Tukey <- TukeyHSD(SeedGen1ANOVA)
print(SeedGen1Tukey)
#add letters for significance, same lettered groups are alike
SeedSigDiffs1 <- multcompLetters4(SeedGen1ANOVA, SeedGen1Tukey)
print(SeedSigDiffs1)
SeedSigDiffsTable1 <- group_by(Gen1, condition ) %>%
summarize( mean = mean(na.rm = TRUE, seed_number)) %>%
arrange(desc(mean))
print(SeedSigDiffsTable1)
SeedSigDiffs1 <- as.data.frame.list(SeedSigDiffs1$condition)
SeedSigDiffsTable1$SeedSigDiffs1 <- SeedSigDiffs1
print(SeedSigDiffsTable1)
#pod count G2 differences by ANOVA, and differences between groups by Tukey test
#ANOVA test 1 way
SeedGen2ANOVA <- aov(seed_number ~ combocondition, data = Gen2)
summary(SeedGen2ANOVA)
#Tukey Test for differences
SeedGen2Tukey <- TukeyHSD(SeedGen2ANOVA)
print(SeedGen2Tukey)
#add letters for significance
SeedSigDiffs2 <- multcompLetters4(SeedGen2ANOVA, SeedGen2Tukey)
print(SeedSigDiffs2)
SeedSigDiffsTable2 <- group_by(Gen2, combocondition ) %>%
summarize( mean = mean(na.rm = TRUE, seed_number)) %>%
arrange(desc(mean))
print(SeedSigDiffsTable2)
SeedSigDiffs2 <- as.data.frame.list(SeedSigDiffs2$combocondition)
SeedSigDiffsTable2$SeedSigDiffs2 <- SeedSigDiffs2
print(SeedSigDiffsTable2)
#Seed Number gen 1 and 2 box plots
SeedNumGen1 <- ggplot(data = Gen1, show.legend= TRUE) +
geom_boxplot(na.rm = TRUE, mapping = aes(x = condition, y = seed_number, color = condition)) +
scale_color_manual(values = ConditionColors,
name = "Condition") +
labs (title = "Generation 1 Seed Count",
y= "Seed Count",
x = "Experimental Condition\n N=5 per group",
subtitle = "Letters indicate significant differences at p < 0.01\n1-way ANOVA, Tukey's Test") +
geom_text(data=SeedSigDiffsTable1, aes(condition, 25, label = SeedSigDiffs1$Letters))
SeedNumGen1
ggsave("SeedNumGen1.png", width = 5, height = 5, dpi = 1000)
SeedNumGen2 <- ggplot(data = Gen2, show.legend= TRUE) +
geom_boxplot(na.rm = TRUE, mapping = aes(x = combocondition, y = pod_number, color = condition)) +
scale_color_manual(values = ConditionColors,
name = "Parent Plant Condition\nDuring Generation 1" ) +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) +
labs (title = "Generation 2 Seed Count",
y= "Seed Count",
x = "Compounded Experimental Condition\n N=12 per group",
subtitle = "Letters indicate significant differences at p < 0.01\n1-way ANOVA, Tukey's Test") +
geom_text(data=SeedSigDiffsTable2, aes(combocondition, 0.5, label = SeedSigDiffs2$Letters))
SeedNumGen2
ggsave("SeedNumGen2.png", width = 5, height = 5, dpi = 1000)
##STOMATAL CONDUCTANCE##
#Stomatal conductance G1 differences by ANOVA, and differences between groups by Tukey test
#ANOVA test 1 way
StoConGen1ANOVA <- aov(stomatal_conductance ~ condition, data = Gen1)
summary(StoConGen1ANOVA)
#Tukey Test for differences
StoConGen1Tukey <- TukeyHSD(StoConGen1ANOVA)
print(StoConGen1Tukey)
#add letters for significance, same lettered groups are alike
StoConSigDiffs1 <- multcompLetters4(StoConGen1ANOVA, StoConGen1Tukey)
print(StoConSigDiffs1)
StoConSigDiffsTable1 <- group_by(Gen1, condition ) %>%
summarize( mean = mean(na.rm = TRUE, stomatal_conductance)) %>%
arrange(desc(mean))
print(StoConSigDiffsTable1)
StoConSigDiffs1 <- as.data.frame.list(StoConSigDiffs1$condition)
StoConSigDiffsTable1$StoConSigDiffs1 <- StoConSigDiffs1
print(StoConSigDiffsTable1)
#stomatal conductance G2 differences by ANOVA, and differences between groups by Tukey test
#ANOVA test 1 way
StoConGen2ANOVA <- aov(stomatal_conductance ~ combocondition, data = Gen2)
summary(StoConGen2ANOVA)
#Tukey Test for differences
StoConGen2Tukey <- TukeyHSD(StoConGen2ANOVA)
print(StoConGen2Tukey)
#add letters for significance
StoConSigDiffs2 <- multcompLetters4(StoConGen2ANOVA, StoConGen2Tukey)
print(StoConSigDiffs2)
StoConSigDiffsTable2 <- group_by(Gen2, combocondition ) %>%
summarize( mean = mean(na.rm = TRUE, stomatal_conductance)) %>%
arrange(desc(mean))
print(StoConSigDiffsTable2)
StoConSigDiffs2 <- as.data.frame.list(StoConSigDiffs2$combocondition)
StoConSigDiffsTable2$StoConSigDiffs2 <- StoConSigDiffs2
print(StoConSigDiffsTable2)
#Stomatal conductance gen 1 and 2 box plots
StoConGen1 <- ggplot(data = Gen1, show.legend= TRUE) +
geom_boxplot(na.rm = TRUE, mapping = aes(x = condition, y = stomatal_conductance, color = condition)) +
scale_color_manual(values = ConditionColors,
name = "Condition") +
labs (title = "Generation 1 Stomatal Conductance ",
y= "Stomatal Conductance (mol/m^2s)",
x = "Experimental Condition\n N=5 per group",
subtitle = "Letters indicate significant differences at p < 0.01\n1-way ANOVA, Tukey's Test") +
geom_text(data=StoConSigDiffsTable1, aes(condition, 0, label = StoConSigDiffs1$Letters))
StoConGen1
ggsave("StoConGen1.png", width = 5, height = 5, dpi = 1000)
StoConGen2 <- ggplot(data = Gen2, show.legend= TRUE) +
geom_boxplot(na.rm = TRUE, mapping = aes(x = combocondition, y = stomatal_conductance, color = condition)) +
scale_color_manual(values = ConditionColors,
name = "Parent Plant Condition\nDuring Generation 1" ) +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) +
labs (title = "Generation 2 Stomatal Conductance",
y= "Stomatal Conductance (mol/m^2s)",
x = "Compounded Experimental Condition\n N=12 per group",
subtitle = "Letters indicate significant differences at p < 0.01\n1-way ANOVA, Tukey's Test") +
geom_text(data=StoConSigDiffsTable2, aes(combocondition, 0, label = StoConSigDiffs2$Letters))
StoConGen2
ggsave("StoConGen2.png", width = 5, height = 5, dpi = 1000)
##PHOTOSYNTHETIC RATE##
#photosynthetic rate G1 differences by ANOVA, and differences between groups by Tukey test
#ANOVA test 1 way
PhotoGen1ANOVA <- aov(photosynthetic_rate ~ condition, data = Gen1)
summary(PhotoGen1ANOVA)
#Tukey Test for differences
PhotoGen1Tukey <- TukeyHSD(PhotoGen1ANOVA)
print(PhotoGen1Tukey)
#add letters for significance, same lettered groups are alike
PhotoSigDiffs1 <- multcompLetters4(PhotoGen1ANOVA, PhotoGen1Tukey)
print(PhotoSigDiffs1)
PhotoSigDiffsTable1 <- group_by(Gen1, condition ) %>%
summarize( mean = mean(na.rm = TRUE, photosynthetic_rate)) %>%
arrange(desc(mean))
print(PhotoSigDiffsTable1)
PhotoSigDiffs1 <- as.data.frame.list(PhotoSigDiffs1$condition)
PhotoSigDiffsTable1$PhotoSigDiffs1 <- PhotoSigDiffs1
print(PhotoSigDiffsTable1)
#photosynthetic rate G2 differences by ANOVA, and differences between groups by Tukey test
#ANOVA test 1 way
PhotoGen2ANOVA <- aov(photosynthetic_rate ~ combocondition, data = Gen2)
summary(PhotoGen2ANOVA)
#Tukey Test for differences
PhotoGen2Tukey <- TukeyHSD(PhotoGen2ANOVA)
print(PhotoGen2Tukey)
#add letters for significance
PhotoSigDiffs2 <- multcompLetters4(PhotoGen2ANOVA, PhotoGen2Tukey)
print(PhotoSigDiffs2)
PhotoSigDiffsTable2 <- group_by(Gen2, combocondition ) %>%
summarize( mean = mean(na.rm = TRUE, photosynthetic_rate)) %>%
arrange(desc(mean))
print(PhotoSigDiffsTable2)
PhotoSigDiffs2 <- as.data.frame.list(PhotoSigDiffs2$combocondition)
PhotoSigDiffsTable2$StoConSigDiffs2 <- PhotoSigDiffs2
print(PhotoSigDiffsTable2)
#photosynthetic rate gen 1 and 2 box plots
PhotoGen1 <- ggplot(data = Gen1, show.legend= TRUE) +
geom_boxplot(na.rm = TRUE, mapping = aes(x = condition, y = photosynthetic_rate, color = condition)) +
scale_color_manual(values = ConditionColors,
name = "Condition") +
labs (title = "Generation 1 Photosynthetic Rate ",
y= "Photosynthetic Rate (µmol/ m^2s)",
x = "Experimental Condition\n N=5 per group",
subtitle = "Letters indicate significant differences at p < 0.01\n1-way ANOVA, Tukey's Test") +
geom_text(data=PhotoSigDiffsTable1, aes(condition, 0, label = PhotoSigDiffs1$Letters))
PhotoGen1
ggsave("PhotoGen1.png", width = 5, height = 5, dpi = 1000)
PhotoGen2 <- ggplot(data = Gen2, show.legend= TRUE) +
geom_boxplot(na.rm = TRUE, mapping = aes(x = combocondition, y = photosynthetic_rate, color = condition)) +
scale_color_manual(values = ConditionColors,
name = "Parent Plant Condition\nDuring Generation 1" ) +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) +
labs (title = "Generation 2 Photosynthetic Rate",
y= "Photosynthetic Rate (µmol/ m^2s)",
x = "Compounded Experimental Condition\n N=12 per group",
subtitle = "Letters indicate significant differences at p < 0.01\n1-way ANOVA, Tukey's Test") +
geom_text(data=StoConSigDiffsTable2, aes(combocondition, 0, label = StoConSigDiffs2$Letters))
PhotoGen2
ggsave("PhotoGen2.png", width = 5, height = 5, dpi = 1000)