-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbad_pictures_from_blinks.py
356 lines (285 loc) · 12.9 KB
/
bad_pictures_from_blinks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
# import the necessary packages
from scipy.spatial import distance as dist
from imutils.video import FileVideoStream
from imutils.video import VideoStream
from imutils import face_utils
import argparse
import imutils
import time
import dlib
import cv2
import queue
import numpy as np
from matplotlib import pyplot as plt
from google_vision import get_results_for_image as google_results
import imgops
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-p", "--shape-predictor",default="shape_predictor_68_face_landmarks.dat",
help="path to facial landmark predictor")
ap.add_argument("-v", "--video", type=str, default="camera",
help="path to input video file")
ap.add_argument("-t", "--threshold", type = float, default=0.2,
help="threshold to determine closed eyes")
ap.add_argument("-f", "--frames", type = int, default=2,
help="the number of consecutive frames the eye must be below the threshold")
ap.add_argument("-d", "--pictureDelay", type = float, default=9,
help="delay between blink detected to picture taken")
ap.add_argument("-e", "--lowerEAR", type = float, default=0.18,
help="lower ear vetting range")
ap.add_argument("-g", "--upperEAR", type = float, default=0.22,
help="upper ear vetting range")
ap.add_argument("-z", "--numCapturedPhotos", type = float, default=9,
help="number of photos to be catured before next layer of analysis")
ap.add_argument("-i", "--displayInfo", type = bool, default=False,
help="Option to display EAR, eye trace and photo count on video")
# finds the greatest rate of change in the EAR
def earDerivative(beforeBlink, afterBlink):
# holds a combination of the before and after blink frames
frames = []
# extracts the frames
for i in range(beforeBlink.qsize()):
frames.append(beforeBlink.get())
for i in range(afterBlink.qsize()):
frames.append(afterBlink.get())
# holds the change in the ear between the n and n+1 frame
derivative = []
for i in range(frames.__len__() - 1):
derivative.append(abs(frames[i][0] - frames[i+1][0]))
returnFrames = [], []
for i in range(10):
returnFrames[0].append(frames[derivative.index(max(derivative))][1])
returnFrames[1].append(frames[derivative.index(max(derivative))][0])
frames.pop(derivative.index(max(derivative)))
derivative.pop(derivative.index(max(derivative)))
return returnFrames
def runFrames(vs, detector, predictor, TOTAL, ear):
# grab the indexes of the facial landmarks for the left and
# right eye, respectively
(lStart, lEnd) = face_utils.FACIAL_LANDMARKS_IDXS["left_eye"]
(rStart, rEnd) = face_utils.FACIAL_LANDMARKS_IDXS["right_eye"]
frame = vs.read()
frame = imutils.resize(frame, width=1000)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# detect faces in the grayscale frame
rects = detector(gray, 0)
# draw the total number of blinks on the frame along with
# the computed eye aspect ratio for the frame
# if args["displayInfo"]:
# cv2.putText(frame, "Photos: {}".format(TOTAL), (10, 30),
# cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
# cv2.putText(frame, "EAR: {:.2f}".format(ear), (300, 30),
# cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
# show the frame
cv2.imshow("Frame", frame)
cv2.waitKey(1)
# determine the facial landmarks for the face region, then
# convert the facial landmark (x, y)-coordinates to a NumPy
# array
shape = predictor(gray, rects[0])
shape = face_utils.shape_to_np(shape)
# extract the left and right eye coordinates, then use the
# coordinates to compute the eye aspect ratio for both eyes
leftEye = shape[lStart:lEnd]
rightEye = shape[rStart:rEnd]
leftEAR = eye_aspect_ratio(leftEye)
rightEAR = eye_aspect_ratio(rightEye)
# average the eye aspect ratio together for both eyes
ear = (leftEAR + rightEAR) / 2.0
return (ear, frame)
def eye_aspect_ratio(eye):
# compute the euclidean distances between the two sets of
# vertical eye landmarks (x, y)-coordinates
A = dist.euclidean(eye[1], eye[5])
B = dist.euclidean(eye[2], eye[4])
# compute the euclidean distance between the horizontal
# eye landmark (x, y)-coordinates
C = dist.euclidean(eye[0], eye[3])
# compute the eye aspect ratio
ear = (A + B) / (2.0 * C)
# return the eye aspect ratio
return ear
def main() :
# FINAL list of images to send to next step
worstPhotos = []
args = vars(ap.parse_args())
EYE_AR_THRESH = args['threshold']
EYE_AR_CONSEC_FRAMES = args['frames']
# initialize the frame counters and the total number of blinks
COUNTER = 0
TOTAL = 0
#initialize queue that holds the frames and ear before and after the blink
beforeBlink = queue.Queue()
afterBlink = queue.Queue()
# initialize dlib's face detector (HOG-based) and then create
# the facial landmark predictor
print("[INFO] loading facial landmark predictor...")
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(args["shape_predictor"])
# grab the indexes of the facial landmarks for the left and
# right eye, respectively
(lStart, lEnd) = face_utils.FACIAL_LANDMARKS_IDXS["left_eye"]
(rStart, rEnd) = face_utils.FACIAL_LANDMARKS_IDXS["right_eye"]
# start the video stream thread
print("[INFO] starting video stream thread...")
print("[INFO] print q to quit...")
if args['video'] == "camera":
vs = VideoStream(src=0).start()
fileStream = False
else:
vs = FileVideoStream(args["video"]).start()
fileStream = True
time.sleep(1.0)
# loop over frames from the video stream
while len(worstPhotos) < args["numCapturedPhotos"]:
try:
# if this is a file video stream, then we need to check if
# there any more frames left in the buffer to process
if fileStream and not vs.more():
break
# grab the frame from the threaded video file stream, resize
# it, and convert it to grayscale
# channels)
frame = vs.read()
frame = imutils.resize(frame, width=1000)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# detect faces in the grayscale frame
rects = detector(gray, 0)
key = 0
# loop over the face detections
for rect in rects:
# determine the facial landmarks for the face region, then
# convert the facial landmark (x, y)-coordinates to a NumPy
# array
shape = predictor(gray, rect)
shape = face_utils.shape_to_np(shape)
# extract the left and right eye coordinates, then use the
# coordinates to compute the eye aspect ratio for both eyes
leftEye = shape[lStart:lEnd]
rightEye = shape[rStart:rEnd]
leftEAR = eye_aspect_ratio(leftEye)
rightEAR = eye_aspect_ratio(rightEye)
# average the eye aspect ratio together for both eyes
ear = (leftEAR + rightEAR) / 2.0
# compute the convex hull for the left and right eye, then
# visualize each of the eyes
if args["displayInfo"]:
leftEyeHull = cv2.convexHull(leftEye)
rightEyeHull = cv2.convexHull(rightEye)
cv2.drawContours(frame, [leftEyeHull], -1, (0, 255, 0), 1)
cv2.drawContours(frame, [rightEyeHull], -1, (0, 255, 0), 1)
# check to see if the eye aspect ratio is below the blink
# threshold, and if so, increment the blink frame counter
if ear < EYE_AR_THRESH:
# adds a delay after detecting the blink before taking the photo
# for i in range(args["pictureDelay"]):
# frame = vs.read()
# frame = imutils.resize(frame, width=450)
# cv2.imwrite("bad_photo.jpg", frame)
# empties the queue
afterBlink.empty()
# saves the blink frame
afterBlink.put((ear, frame))
# saves the next frames
for i in range(10):
if len(detector(gray, 0)) > 0:
try:
afterBlink.put(runFrames(vs, detector, predictor, TOTAL, ear))
except:
pass
# frames from the derivative method
derFrames = (earDerivative(beforeBlink, afterBlink))
# fig = plt.figure(figsize=(4, 8))
# columns = 1
# rows = 5
# for i in range(1, columns * rows + 1):
# img = derFrames[0][i-1]
# fig.add_subplot(rows, columns, i)
# plt.imshow(img)
# plt.show()
# worstPhotos.append(derFrames[0][2])
# worstPhotos.append(derFrames[0][3])
# worstPhotos.append(derFrames[0][4])
#
# derFrames[0].pop(2)
# derFrames[0].pop(2)
# derFrames[0].pop(2)
if derFrames[1][args["pictureDelay"]] < args["upperEAR"]+0.01 and derFrames[1][args["pictureDelay"]] > args["lowerEAR"]-0.01:
worstPhotos.append(derFrames[0][args["pictureDelay"]])
derFrames[0].pop(args["pictureDelay"])
derFrames[1].pop(args["pictureDelay"])
TOTAL += 1
print(TOTAL)
# vets bad bad images
i = 0
while(i < len(derFrames[1])):
if derFrames[1][i] > args["upperEAR"] or derFrames[1][i] < args["lowerEAR"]:
derFrames[0].pop(i)
derFrames[1].pop(i)
else:
i += 1
for photo in derFrames[0]:
worstPhotos.append(photo)
TOTAL += 1
print(TOTAL)
# fig = plt.figure(figsize=(4, 8))
# columns = 1
# rows = len(derFrames[0])
# for i in range(1, columns * rows + 1):
# img = derFrames[0][i - 1]
# fig.add_subplot(rows, columns, i)
# plt.imshow(img)
# plt.show()
# elif ear > 0.45:
# worstPhotos.append(frame)
# otherwise, the eye aspect ratio is not below the blink 69
# threshold
else:
# removes the oldest queue item if 10 frames have already been saved
if beforeBlink.qsize() >= 20:
beforeBlink.get()
# adds to the queue of frames before the blink
beforeBlink.put((ear,frame))
# if the eyes were closed for a sufficient number of
# then increment the total number of blinks
if COUNTER >= EYE_AR_CONSEC_FRAMES:
TOTAL += 1
# reset the eye frame counter
COUNTER = 0
# draw the total number of blinks on the frame along with
# the computed eye aspect ratio for the frame
if args["displayInfo"]:
cv2.putText(frame, "Photos: {}".format(TOTAL), (10, 30),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
cv2.putText(frame, "EAR: {:.2f}".format(ear), (300, 30),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
# show the frame
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
except:
pass
# if the `q` key was pressed, break from the loop
if key == ord("q"):
break
# fig = plt.figure(figsize=(4, 8))
# columns = 3
# rows = int(len(worstPhotos)/3)
# for i in range(1, columns * rows + 1):
# img = worstPhotos[i - 1]
# fig.add_subplot(rows, columns, i)
# plt.imshow(img)
# plt.show()
# do a bit of cleanup
cv2.destroyAllWindows()
vs.stop()
dicts = []
for i in range(len(worstPhotos)):
result = google_results(worstPhotos[i])
result['id'] = i
dicts.append(result)
for meme in imgops.getMemeBuffer(dicts, worstPhotos):
cv2.imshow("Meme", meme)
cv2.waitKey(0)
cv2.destroyAllWindows()
if __name__ == '__main__' :
main()