-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhiveEnsembleAveragesFctn.m
402 lines (267 loc) · 8.79 KB
/
hiveEnsembleAveragesFctn.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
function hiveEnsembleAveragesFctn()
% Test Script for exploring Hives, uses parallel sampling
% dim must be >2
% Computes the mean hive surfaces for various matrix ensembles, as well as
% average curvatures. See helper function below for setting the ensembles
clear
close all
clc
%% Vector space dimension
m = 15;
%% Total number of samples
sampleMax = 3*10;
%% Tollerance
tol = 10^-7;
%% Establish storage
hivesStorage = cell(1,sampleMax);
GCStorage = cell(1,sampleMax);
MCStorage = cell(1,sampleMax);
%% Flags must be unset%
flagData.waitbar = 0; %
flagData.verb = 0; %
flagData.parallel = 0;%
%%%%%%%%%%%%%%%%%%%%%%%
%% Gather Samples
% Parallel loop over samples
%% Setup Job
myCluster = parcluster; % Use default profile
j = createJob(myCluster,'Name','CollectHives','AttachedFiles','/home/jlombs/Research/Mixing/MixingCode/hives/taskStartup.m');
%% Setup Tasks
inputParams = cell(1,sampleMax);
for i = 1:sampleMax
inputParams{i} = {m,flagData,tol};
end
t = createTask(j,@parallelWork,3,inputParams);
%% Submit job, wait for completion, retrive and organize data
submit(j);
wait(j)
data = fetchOutputs(j);
for i = 1:sampleMax
hivesStorage{i} = data{i,1};
GCStorage{i} = data{i,2};
MCStorage{i} = data{i,3};
end
%% Delete data off of workers
delete(j)
%% Build mean hive and compute average GC and MC
meanHive = hivesStorage{1};
GCAvg = GCStorage{1};
MCAvg = MCStorage{1};
for i = 2:sampleMax
meanHive = meanHive + hivesStorage{i};
GCAvg = GCAvg + GCStorage{i};
MCAvg = MCAvg + MCStorage{i};
end
Hijk = meanHive./sampleMax;
GCAvg = GCAvg./sampleMax;
MCAvg = MCAvg./sampleMax;
%% Plots--code largely reproduced from plotHive.m with tweaks to the labelings
% Plot numerical Hive and Rhombus Failures if Applicable
[numFailures,rhombuses,totalDefect] = rhombusCheck(Hijk,m,tol);
%Shift can be optimized for pretty pictures depending on scale of image and
%resolution of viewing screen.
textCentering = -.05;
%Get relevent coordinates and values
[k,i,v] = find(Hijk);
%Tweak values to lie on a nice triangle with the right orientation
for q = 1:numel(k)
i(q) = i(q)-1;
k(q) = k(q)-1 + i(q)*.5;
end
%Plot values in the triangle
plot(k+textCentering,i,'w*');
hold on
ln = findobj('type','line');
set(ln,'marker','.','markers',14,'markerfa','w')
%Set formatting properly
for q = 1:nnz(Hijk)
if round(v(q))-v(q) < tol
v(q) = round(v(q));
textFormat = '%d';
else
textFormat = '%3.2f';
end
text(k(q)+textCentering,i(q),sprintf(textFormat,v(q)))
end
%Plot the 0 normalized value
text(textCentering,0,'0')
%Label
xlabel('K')
ylabel('I')
if numFailures == 0
title(sprintf('%d-Average Hive of Order %d is a Good Hive',sampleMax,m))
else
title(sprintf('%d Average Hive Hive of Order %d has \n %d Failures and %3.2e Total Defect',sampleMax,m,numFailures,totalDefect))
end
axis([-1 (m+1) -1 (m+1)])
%Highlight any failed rhombus inequalities by looping over them
for q = 1:numFailures
%Create the vertex list from rhombuses
vert = zeros(4,2);
count = 1;
for p = 1:2:7
vert(count,:) = [rhombuses(q,p) rhombuses(q,p+1)];
count = count + 1;
end
%Again shift for good coordinates
for p = 1:4
vert(p,2) = vert(p,2)-1;
vert(p,1) = vert(p,1)-1 + vert(p,2)*.5;
end
%Set adjacency relationship between all rhombuses and their 4 vertices
faces = [1 3 2 4 1];
%Plot the semiopaque rhombus
pb = patch('Faces',faces,'Vertices',vert,'FaceColor','r','EdgeColor','k');
hold on
alpha(pb,.1);
end
%% Plot Hive Surface
figure()
% Add origin point
k = [k;0];
i = [i;0];
v = [v;0];
% Compute triangulation
DT = delaunay([k+textCentering,i]);
% Remove exterior triangulations
DTRem = false(1,size(DT,1));
for q = 1:size(DT,1)
if (k(DT(q,1)) - k(DT(q,2)))^2 +(i(DT(q,1)) - i(DT(q,2)))^2 > 2 || ...
(k(DT(q,1)) - k(DT(q,3)))^2 +(i(DT(q,1)) - i(DT(q,3)))^2 > 2 || ...
(k(DT(q,3)) - k(DT(q,2)))^2 +(i(DT(q,3)) - i(DT(q,2)))^2 > 2
DTRem(q) = true;
end
end
DT(DTRem,:) = [];
tr = triangulation(DT,k,i,v);
trisurf(tr)
%Highlight any failed rhombus inequalities by looping over them
for q = 1:numFailures
%Create the vertex list from rhombuses
vert = zeros(4,3);
count = 1;
for p = 1:2:7
vert(count,1:2) = [rhombuses(q,p) rhombuses(q,p+1)];
vert(count,3) = Hijk(vert(count,1),vert(count,2));
count = count + 1;
end
%Again shift for good coordinates
for p = 1:4
vert(p,2) = vert(p,2)-1;
vert(p,1) = vert(p,1)-1 + vert(p,2)*.5;
end
%Set adjacency relationship between all rhombuses and their 4 vertices
faces = [1 3 2 4 1];
%Plot the semiopaque rhombus
pb = patch('Faces',faces,'Vertices',vert,'FaceColor','r','EdgeColor','k');
hold on
alpha(pb,.5);
end
if numFailures == 0
title(sprintf('Average of %d %d-Hive Surfaces',sampleMax,m))
else
title(sprintf('Failed %d Average Hive Surface of Order %d with \n %d Failures and %3.2e Total Defect',sampleMax, m,numFailures,totalDefect))
end
%% Plot the Mean and Gaussian Curvatures for the Average Hive Surface
%{
[GC, MC]= curvatures(k,i,v,DT);
figure()
patch('Faces',DT,'Vertices',[k,i,v],'FaceVertexCData',GC,'FaceColor','interp','EdgeColor','none')
colormap jet
colorbar
title(sprintf('Estimated Gaussian Curvature for the %d Average Hive',sampleMax));
figure()
patch('Faces',DT,'Vertices',[k,i,v],'FaceVertexCData',MC,'FaceColor','interp','EdgeColor','none')
colormap jet
colorbar
title(sprintf('Estimated Mean Curvature for the %d Average Hive',sampleMax));
%}
%% Plot the Average Mean and Gaussian Curvatures
figure()
patch('Faces',DT,'Vertices',[k,i,v],'FaceVertexCData',GCAvg,'FaceColor','interp','EdgeColor','none')
colormap jet
colorbar
title(sprintf('Estimated Average Gaussian Curvature for %d %d-Hives',sampleMax,m));
figure()
patch('Faces',DT,'Vertices',[k,i,v],'FaceVertexCData',MCAvg,'FaceColor','interp','EdgeColor','none')
colormap jet
colorbar
title(sprintf('Estimated Average Mean Curvature for %d %d-Hives',sampleMax,m));
%% Graph the leading boundary edge of the mean hive
bndVals = v(i==0);
bndVals = [bndVals(end);bndVals];
bndVals(end) = [];
figure()
plot(1:numel(bndVals),bndVals)
title(sprintf('Projected Boundary Curve for the %d-Average Hive Surface of Order %d',sampleMax,m));
end
function [hive,GC,MC] = parallelWork(m,flagData,tol)
while 1
%% Setup matrix ensembles
%{
% Diagonally Dominant SPD matrices. sames
L = RSMGenerator(m);
L = L + m*eye(m);
M = L;
%}
%{
% Normally distributed SPD, sames
L = randn(m);
L = L'*L;
M = L;
%}
%{
% Diagonal matrices with weakly decreasing positive integer values
M = diag(sort(randi(50,[1,m]),'descend'));
L = diag(sort(randi(50,[1,m]),'descend'));
%}
%{
% Diagonal matrices with weakly decreasing real values less than abs(x)
x = 500;
M = diag(sort(x*(2*rand([m,1])-1),'descend'));
L = diag(sort(x*(2*rand([m,1])-1),'descend'));
%}
%%{
%GOE matrices, sames
L = GOEGenerator(m);
M = L;
%}
%% Perform optimization with up to 4 re-runs for the same boundary data
hiveLogical = 0;
trials = 0;
while hiveLogical == 0 && trials < 4
Hijk = AWHiveParallel(L,M,flagData);
if ~isempty(Hijk)
hiveLogical = rhombusCheckF(Hijk,m,tol);
elseif trials == 4
hiveLogical = false;
end
trials = trials + 1;
end
%% Compute triangulation and curvatures and store the results if it's a good hive
if hiveLogical
hive = Hijk;
textCentering = -.05;
[k,j,v] = find(Hijk);
for q = 1:numel(k)
j(q) = j(q)-1;
k(q) = k(q)-1 + j(q)*.5;
end
k = [k;0];
j = [j;0];
v = [v;0];
DT = delaunay([k+textCentering,j]);
DTRem = false(1,size(DT,1));
for q = 1:size(DT,1)
if (k(DT(q,1)) - k(DT(q,2)))^2 +(j(DT(q,1)) - j(DT(q,2)))^2 > 2 || ...
(k(DT(q,1)) - k(DT(q,3)))^2 +(j(DT(q,1)) - j(DT(q,3)))^2 > 2 || ...
(k(DT(q,3)) - k(DT(q,2)))^2 +(j(DT(q,3)) - j(DT(q,2)))^2 > 2
DTRem(q) = true;
end
end
DT(DTRem,:) = [];
[GC, MC]= curvatures(k,j,v,DT);
break
end
end
end