-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_integration_and_mining_with_graphs-dynamic_graphs.html
216 lines (216 loc) · 297 KB
/
data_integration_and_mining_with_graphs-dynamic_graphs.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0//EN" "http://www.w3.org/Math/DTD/mathml2/xhtml-math11-f.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"><!--This file was converted to xhtml by LibreOffice - see http://cgit.freedesktop.org/libreoffice/core/tree/filter/source/xslt for the code.--><head profile="http://dublincore.org/documents/dcmi-terms/"><meta http-equiv="Content-Type" content="application/xhtml+xml; charset=utf-8"/><title xml:lang="en-US">- no title specified</title><meta name="DCTERMS.title" content="" xml:lang="en-US"/><meta name="DCTERMS.language" content="en-US" scheme="DCTERMS.RFC4646"/><meta name="DCTERMS.source" content="http://xml.openoffice.org/odf2xhtml"/><meta name="DCTERMS.creator" content="JeanKarim Heriche"/><meta name="DCTERMS.issued" content="2015-12-03T10:16:03.988869442" scheme="DCTERMS.W3CDTF"/><meta name="DCTERMS.modified" content="2015-12-17T20:34:38.193941000" scheme="DCTERMS.W3CDTF"/><meta name="DCTERMS.provenance" content="" xml:lang="en-US"/><meta name="DCTERMS.subject" content="," xml:lang="en-US"/><link rel="schema.DC" href="http://purl.org/dc/elements/1.1/" hreflang="en"/><link rel="schema.DCTERMS" href="http://purl.org/dc/terms/" hreflang="en"/><link rel="schema.DCTYPE" href="http://purl.org/dc/dcmitype/" hreflang="en"/><link rel="schema.DCAM" href="http://purl.org/dc/dcam/" hreflang="en"/><style type="text/css">
@page { }
table { border-collapse:collapse; border-spacing:0; empty-cells:show }
td, th { vertical-align:top; font-size:12pt;}
h1, h2, h3, h4, h5, h6 { clear:both }
ol, ul { margin:0; padding:0;}
li { list-style: none; margin:0; padding:0;}
<!-- "li span.odfLiEnd" - IE 7 issue-->
li span. { clear: both; line-height:0; width:0; height:0; margin:0; padding:0; }
span.footnodeNumber { padding-right:1em; }
span.annotation_style_by_filter { font-size:95%; font-family:Arial; background-color:#fff000; margin:0; border:0; padding:0; }
* { margin:0;}
.fr1 { border-style:none; font-size:12pt; margin-bottom:0in; margin-left:0in; margin-right:0in; margin-top:0in; padding:0in; font-family:Liberation Serif; text-align:center; vertical-align:top; writing-mode:lr-tb; }
.fr2 { font-size:12pt; font-family:Liberation Serif; text-align:center; vertical-align:top; writing-mode:lr-tb; }
.fr3 { font-size:12pt; font-family:Liberation Serif; text-align:center; vertical-align:top; writing-mode:lr-tb; margin-left:0in; margin-right:0in; margin-top:0in; margin-bottom:0in; padding:0in; border-style:none; }
.fr4 { font-size:12pt; font-family:Liberation Serif; text-align:center; vertical-align:top; writing-mode:lr-tb; }
.Caption { font-size:12pt; font-family:Liberation Serif; writing-mode:lr-tb; margin-top:0.0835in; margin-bottom:0.0835in; font-style:italic; }
.Footer { font-size:12pt; font-family:Liberation Serif; writing-mode:lr-tb; }
.P1 { font-size:12pt; font-family:Arial; writing-mode:lr-tb; text-align:left ! important; font-weight:normal; }
.P10 { font-size:12pt; font-family:Arial; writing-mode:lr-tb; line-height:150%; text-align:left ! important; text-decoration:none ! important; font-weight:normal; }
.P11 { font-size:12pt; font-family:Arial; writing-mode:lr-tb; line-height:150%; text-align:left ! important; text-decoration:none ! important; font-weight:normal; }
.P12 { font-size:12pt; font-family:Arial; writing-mode:lr-tb; line-height:150%; text-align:left ! important; text-decoration:none ! important; font-weight:normal; }
.P13 { font-size:12pt; font-family:Arial; writing-mode:lr-tb; line-height:150%; text-align:left ! important; text-decoration:none ! important; font-weight:normal; }
.P14 { font-size:12pt; font-family:Arial; writing-mode:lr-tb; line-height:150%; text-align:left ! important; text-decoration:none ! important; font-weight:normal; }
.P15 { font-size:12pt; font-family:Arial; writing-mode:lr-tb; line-height:150%; text-align:left ! important; text-decoration:none ! important; font-weight:normal; }
.P16 { font-size:12pt; font-family:Arial; writing-mode:lr-tb; line-height:150%; text-align:left ! important; text-decoration:none ! important; font-weight:normal; }
.P17 { font-size:12pt; font-family:Arial; writing-mode:lr-tb; line-height:150%; text-align:left ! important; text-decoration:none ! important; font-weight:normal; }
.P18 { font-size:12pt; font-family:Arial; writing-mode:lr-tb; line-height:150%; text-align:left ! important; text-decoration:none ! important; font-weight:normal; }
.P19 { font-size:14pt; font-family:Arial; writing-mode:lr-tb; text-align:left ! important; }
.P2 { font-size:12pt; font-family:Arial; writing-mode:lr-tb; line-height:150%; text-align:left ! important; font-weight:normal; }
.P20 { font-size:14pt; font-family:Arial; writing-mode:lr-tb; text-align:center ! important; }
.P21 { font-size:14pt; font-family:Arial; writing-mode:lr-tb; text-align:center ! important; }
.P22 { font-size:14pt; font-family:Arial; writing-mode:lr-tb; text-align:center ! important; }
.P23 { font-size:14pt; font-family:Arial; writing-mode:lr-tb; text-align:center ! important; }
.P24 { font-size:14pt; font-family:Arial; writing-mode:lr-tb; text-align:left ! important; font-weight:bold; }
.P25 { font-size:14pt; font-family:Arial; writing-mode:lr-tb; line-height:150%; text-align:left ! important; font-weight:bold; }
.P26 { font-size:14pt; font-family:Arial; writing-mode:lr-tb; line-height:150%; text-align:left ! important; text-decoration:none ! important; font-weight:bold; }
.P27 { font-size:14pt; font-family:Arial; writing-mode:lr-tb; line-height:150%; text-align:left ! important; text-decoration:none ! important; font-weight:bold; }
.P28 { font-size:14pt; font-family:Arial; writing-mode:lr-tb; line-height:150%; text-align:left ! important; text-decoration:none ! important; font-weight:bold; }
.P29 { font-size:14pt; font-family:Arial; writing-mode:lr-tb; line-height:150%; text-align:left ! important; text-decoration:none ! important; font-weight:bold; }
.P3 { font-size:12pt; font-family:Arial; writing-mode:lr-tb; line-height:150%; text-align:left ! important; font-weight:normal; }
.P30 { font-size:14pt; font-family:Arial; writing-mode:lr-tb; line-height:150%; text-align:left ! important; text-decoration:none ! important; font-weight:bold; }
.P31 { font-size:14pt; font-family:Arial; writing-mode:lr-tb; line-height:150%; text-align:left ! important; text-decoration:none ! important; font-weight:bold; }
.P32 { font-size:28pt; font-family:Arial; writing-mode:lr-tb; text-align:center ! important; }
.P33 { font-size:26pt; font-family:Arial; writing-mode:lr-tb; text-align:center ! important; }
.P34 { font-size:26pt; font-family:Arial; writing-mode:lr-tb; text-align:center ! important; }
.P35 { font-size:12pt; font-family:Arial; writing-mode:lr-tb; line-height:150%; text-align:left ! important; }
.P36 { font-size:12pt; font-family:Arial; writing-mode:lr-tb; line-height:150%; text-align:left ! important; }
.P37 { font-size:12pt; font-family:Arial; writing-mode:lr-tb; line-height:150%; text-align:left ! important; font-style:italic; }
.P38 { font-size:12pt; font-family:Liberation Serif; writing-mode:lr-tb; line-height:150%; text-align:left ! important; }
.P39 { font-size:12pt; font-family:Liberation Serif; writing-mode:lr-tb; line-height:150%; text-align:left ! important; }
.P4 { font-size:12pt; font-family:Arial; writing-mode:lr-tb; line-height:150%; text-align:left ! important; font-weight:normal; }
.P40 { font-size:12pt; font-family:Liberation Serif; writing-mode:lr-tb; line-height:150%; text-align:left ! important; }
.P41 { font-size:12pt; font-family:Liberation Serif; writing-mode:lr-tb; line-height:150%; text-align:left ! important; }
.P42 { font-size:12pt; font-family:Liberation Serif; writing-mode:lr-tb; line-height:150%; text-align:left ! important; }
.P43 { font-size:12pt; font-family:Liberation Serif; writing-mode:lr-tb; line-height:150%; text-align:left ! important; }
.P44 { font-size:12pt; font-family:Arial; writing-mode:lr-tb; line-height:150%; text-align:left ! important; font-weight:normal; }
.P45 { font-size:12pt; font-family:Arial; writing-mode:lr-tb; line-height:150%; text-align:left ! important; color:#000000; letter-spacing:normal; text-decoration:none ! important; font-weight:normal; }
.P46 { font-size:12pt; font-family:Arial; writing-mode:lr-tb; line-height:150%; text-align:left ! important; color:#000000; letter-spacing:normal; text-decoration:none ! important; font-weight:normal; }
.P47 { font-size:14pt; font-family:Arial; writing-mode:lr-tb; line-height:150%; text-align:left ! important; color:#000000; letter-spacing:normal; text-decoration:none ! important; font-weight:bold; }
.P48 { font-size:14pt; font-family:Arial; writing-mode:lr-tb; line-height:150%; text-align:left ! important; color:#000000; letter-spacing:normal; text-decoration:none ! important; font-weight:bold; }
.P49 { font-size:12pt; font-family:GillSans; writing-mode:lr-tb; color:#000000; letter-spacing:normal; text-decoration:none ! important; font-weight:normal; }
.P5 { font-size:12pt; font-family:Arial; writing-mode:lr-tb; line-height:150%; font-weight:normal; }
.P50 { font-size:14pt; font-family:Arial; writing-mode:lr-tb; line-height:150%; text-align:left ! important; font-weight:bold; }
.P51 { font-size:14pt; font-family:Arial; writing-mode:lr-tb; line-height:150%; text-align:left ! important; text-decoration:none ! important; font-weight:bold; }
.P52 { font-size:12pt; font-family:Arial; writing-mode:lr-tb; margin-left:0in; margin-right:0in; line-height:150%; text-align:left ! important; text-indent:0in; font-weight:normal; }
.P53 { font-size:12pt; font-family:Arial; writing-mode:lr-tb; margin-left:0in; margin-right:0in; line-height:150%; text-align:left ! important; text-indent:0in; text-decoration:none ! important; font-weight:normal; }
.P54 { font-size:12pt; font-family:Ubuntu Mono; writing-mode:lr-tb; margin-left:0in; margin-right:0in; line-height:150%; text-align:left ! important; text-indent:0in; background-color:#e6e6e6; color:#000000; letter-spacing:normal; text-decoration:none ! important; font-weight:normal; }
.P55 { font-size:12pt; font-family:Ubuntu Mono; writing-mode:lr-tb; margin-left:0in; margin-right:0in; line-height:150%; text-align:left ! important; text-indent:0in; background-color:#e6e6e6; color:#000000; font-weight:normal; }
.P56 { font-size:12pt; font-family:Ubuntu Mono; writing-mode:lr-tb; margin-left:0in; margin-right:0in; line-height:150%; text-align:left ! important; text-indent:0in; background-color:#e6e6e6; color:#000000; font-weight:normal; }
.P57 { font-size:12pt; font-family:Ubuntu Mono; writing-mode:lr-tb; margin-left:0in; margin-right:0in; line-height:150%; text-align:left ! important; text-indent:0in; background-color:#e6e6e6; color:#000000; font-weight:normal; }
.P58 { font-size:12pt; font-family:Ubuntu Mono; writing-mode:lr-tb; margin-left:0in; margin-right:0in; line-height:150%; text-align:left ! important; text-indent:0in; background-color:#e6e6e6; color:#000000; font-weight:normal; }
.P59 { font-size:12pt; font-family:Ubuntu Mono; writing-mode:lr-tb; margin-left:0in; margin-right:0in; line-height:150%; text-align:left ! important; text-indent:0in; background-color:#e6e6e6; color:#000000; font-weight:normal; }
.P6 { font-size:12pt; font-family:Arial; writing-mode:lr-tb; line-height:150%; text-align:left ! important; text-decoration:none ! important; font-weight:normal; }
.P60 { font-size:12pt; font-family:Arial; writing-mode:lr-tb; line-height:150%; text-align:left ! important; text-decoration:none ! important; font-weight:normal; }
.P61 { font-size:12pt; font-family:Arial; writing-mode:lr-tb; line-height:150%; text-align:left ! important; text-decoration:none ! important; font-weight:normal; }
.P62 { font-size:12pt; font-family:Arial; writing-mode:lr-tb; line-height:150%; text-align:left ! important; text-decoration:none ! important; font-weight:normal; }
.P63 { font-size:12pt; font-family:Arial; writing-mode:lr-tb; line-height:150%; text-align:left ! important; font-weight:normal; }
.P64 { font-size:12pt; font-family:Arial; writing-mode:lr-tb; line-height:150%; text-align:left ! important; font-weight:normal; }
.P65 { font-size:12pt; font-family:Arial; writing-mode:lr-tb; line-height:150%; text-align:left ! important; font-weight:normal; }
.P7 { font-size:12pt; font-family:Arial; writing-mode:lr-tb; line-height:150%; text-align:left ! important; text-decoration:none ! important; font-weight:normal; }
.P8 { font-size:12pt; font-family:Arial; writing-mode:lr-tb; line-height:150%; text-align:left ! important; text-decoration:none ! important; font-weight:normal; }
.P9 { font-size:12pt; font-family:Arial; writing-mode:lr-tb; line-height:150%; text-align:left ! important; text-decoration:none ! important; font-weight:normal; }
.Bullet_20_Symbols { font-family:OpenSymbol; }
.Emphasis { font-style:italic; }
.Internet_20_link { color:#000080; text-decoration:underline; }
.T10 { text-decoration:none ! important; }
.T100 { font-family:Arial; font-style:normal; }
.T101 { font-family:Arial; font-weight:bold; }
.T102 { font-family:Arial; font-weight:bold; }
.T104 { font-style:italic; }
.T105 { font-style:normal; }
.T106 { font-style:normal; }
.T107 { font-family:Arial; font-weight:bold; }
.T108 { font-family:Arial; font-weight:bold; }
.T11 { text-decoration:none ! important; }
.T115 { vertical-align:super; font-size:58%;font-family:Arial; font-size:12pt; text-decoration:none ! important; font-weight:normal; }
.T12 { text-decoration:none ! important; }
.T123 { color:#000000; font-family:Arial; font-size:12pt; letter-spacing:normal; text-decoration:none ! important; }
.T124 { color:#000000; font-family:Arial; font-size:12pt; letter-spacing:normal; font-style:normal; text-decoration:none ! important; }
.T125 { color:#000000; vertical-align:super; font-size:58%;font-size:14pt; letter-spacing:normal; text-decoration:none ! important; }
.T126 { color:#000000; letter-spacing:normal; text-decoration:none ! important; }
.T127 { color:#000000; letter-spacing:normal; text-decoration:underline; }
.T13 { text-decoration:none ! important; }
.T14 { text-decoration:none ! important; }
.T15 { text-decoration:none ! important; }
.T16 { text-decoration:none ! important; }
.T17 { text-decoration:none ! important; }
.T18 { text-decoration:none ! important; }
.T19 { text-decoration:none ! important; }
.T20 { text-decoration:none ! important; }
.T21 { text-decoration:none ! important; }
.T22 { text-decoration:none ! important; }
.T23 { text-decoration:none ! important; }
.T24 { text-decoration:none ! important; }
.T25 { text-decoration:none ! important; }
.T26 { text-decoration:none ! important; }
.T27 { text-decoration:none ! important; }
.T28 { text-decoration:none ! important; }
.T29 { text-decoration:none ! important; }
.T3 { text-decoration:none ! important; }
.T30 { text-decoration:none ! important; }
.T31 { text-decoration:none ! important; }
.T32 { text-decoration:none ! important; }
.T33 { text-decoration:none ! important; }
.T34 { text-decoration:none ! important; }
.T35 { text-decoration:none ! important; }
.T4 { text-decoration:none ! important; }
.T43 { font-size:11pt; text-decoration:none ! important; }
.T44 { text-decoration:underline; font-weight:bold; }
.T45 { text-decoration:underline; font-weight:bold; }
.T46 { text-decoration:underline; font-weight:bold; }
.T47 { text-decoration:underline; font-weight:bold; }
.T48 { font-weight:bold; }
.T49 { font-weight:bold; }
.T5 { text-decoration:none ! important; }
.T50 { font-weight:bold; }
.T51 { font-weight:bold; }
.T52 { vertical-align:sub; font-size:70%;}
.T53 { vertical-align:sub; font-size:70%;}
.T54 { vertical-align:sub; font-size:70%;font-weight:bold; }
.T55 { vertical-align:sub; font-size:70%;font-family:Arial; font-size:12pt; text-decoration:none ! important; font-weight:normal; }
.T56 { vertical-align:sub; font-size:70%;font-family:Arial; font-size:12pt; text-decoration:none ! important; font-weight:normal; }
.T6 { text-decoration:none ! important; }
.T63 { font-family:Arial; font-weight:normal; }
.T64 { font-family:Arial; font-weight:normal; }
.T65 { font-family:Arial; font-weight:normal; }
.T66 { font-family:Arial; font-weight:normal; }
.T67 { font-family:Arial; font-weight:bold; }
.T69 { font-family:Arial; }
.T7 { text-decoration:none ! important; }
.T70 { font-family:Arial; font-size:12pt; text-decoration:none ! important; font-weight:normal; }
.T71 { font-family:Arial; font-size:12pt; text-decoration:none ! important; font-weight:normal; }
.T72 { font-family:Arial; font-size:12pt; text-decoration:none ! important; font-weight:normal; }
.T73 { font-family:Arial; font-size:12pt; text-decoration:none ! important; font-weight:normal; }
.T74 { font-family:Arial; font-size:12pt; text-decoration:none ! important; font-weight:normal; }
.T75 { font-family:Arial; font-size:12pt; text-decoration:none ! important; font-weight:normal; }
.T76 { font-family:Arial; font-size:12pt; text-decoration:none ! important; font-weight:normal; }
.T77 { font-family:Arial; font-size:12pt; text-decoration:none ! important; font-weight:normal; }
.T78 { font-family:Arial; font-size:12pt; text-decoration:none ! important; font-weight:normal; }
.T79 { font-family:Arial; font-size:12pt; text-decoration:none ! important; font-weight:normal; }
.T8 { text-decoration:none ! important; }
.T80 { font-family:Arial; font-size:12pt; text-decoration:none ! important; font-weight:normal; }
.T81 { font-family:Arial; font-size:12pt; text-decoration:none ! important; font-weight:normal; }
.T82 { font-family:Arial; font-size:12pt; text-decoration:none ! important; font-weight:normal; }
.T83 { font-family:Arial; font-size:12pt; text-decoration:none ! important; font-weight:normal; }
.T84 { font-family:Arial; font-size:12pt; text-decoration:none ! important; font-weight:bold; }
.T85 { font-family:Arial; font-size:12pt; text-decoration:none ! important; font-weight:bold; }
.T86 { font-family:Arial; font-size:12pt; text-decoration:none ! important; font-weight:bold; }
.T87 { font-family:Arial; font-size:12pt; text-decoration:none ! important; font-weight:bold; }
.T88 { font-family:Arial; font-size:12pt; text-decoration:none ! important; font-weight:bold; }
.T89 { font-family:Arial; font-size:12pt; font-style:italic; text-decoration:none ! important; font-weight:normal; }
.T9 { text-decoration:none ! important; }
.T90 { font-family:Arial; font-size:12pt; font-style:italic; text-decoration:none ! important; font-weight:normal; }
.T91 { font-family:Arial; font-size:12pt; font-style:italic; text-decoration:none ! important; font-weight:normal; }
.T92 { font-family:Arial; font-size:12pt; font-style:normal; text-decoration:none ! important; font-weight:normal; }
.T93 { font-family:Arial; font-size:12pt; font-style:normal; text-decoration:none ! important; font-weight:normal; }
.T94 { font-family:Arial; font-size:12pt; font-style:normal; text-decoration:none ! important; font-weight:normal; }
.T95 { font-family:Arial; font-style:italic; }
.T96 { font-family:Arial; font-style:normal; }
.T97 { font-family:Arial; font-style:normal; }
.T98 { font-family:Arial; font-style:normal; }
.T99 { font-family:Arial; font-style:normal; }
<!-- ODF styles with no properties representable as CSS -->
.T1 .T103 .T109 .T110 .T111 .T112 .T113 .T114 .T116 .T117 .T118 .T119 .T120 .T121 .T122 .T128 .T129 .T130 .T131 .T132 .T133 .T134 .T135 .T136 .T2 .T36 .T37 .T38 .T39 .T40 .T41 .T42 .T57 .T58 .T59 .T60 .T61 .T62 .T68 { }
</style></head><body dir="ltr" style="max-width:8.2681in;margin-top:0.7874in; margin-bottom:0.7874in; margin-left:0.7874in; margin-right:0.7874in; writing-mode:lr-tb; "><p class="P19">EMBL Centre for Network Analysis <span class="T1">workshop 9-11 December 2015</span></p><p class="P32"> </p><p class="P32"> </p><p class="P33">Data integration and mining with graphs:</p><p class="P33"> </p><p class="P34"><span class="T109">Tensor factorizations for d</span>ynamic graphs</p><p class="P20"> </p><p class="P20"> </p><p class="P21">Jean-Karim Hériché</p><p class="P22">Ellenberg lab</p><p class="P21">Cell Biology and Biophysics unit</p><p class="P20"> </p><p class="P23"> </p><p class="P20"> </p><p class="P20"> </p><p class="P20"> </p><p class="P20"> </p><p class="P20"> </p><p class="P24">Summary</p><p class="P1"> </p><p class="P1"><span> <span class="T36">As gene networks become available for multiple time points and experimental conditions, there's a need for principled ways of detecting patterns and their evolution in such dynamic graphs. We will introduce a tensor representation of dynamic graphs and tensor factorization methods as ways of investigating patterns in these graphs.</span></span></p><p class="P1"> </p><p class="P1"> </p><p class="P50">Motivation</p><p class="P4"><span> <span class="T2">Many biological processes are driven by systems that evolve over time. New technologies make the dynamics of such systems more accessible with increasingly higher time resolution. In particular, data on gene networks can be acquired for multiple time points and experimental conditions. </span><span class="T4">Detecting patterns and how they evolve over time </span><span class="T7">and/or across experimental conditions</span><span class="T4"> </span><span class="T5">in </span><span class="T6">such </span><span class="T5">multidimensional data is becoming a common task.</span><span class="T8"> For example, one may have performed AP-MS experiments of several proteins at different cell cycle or developmental stages </span><span class="T9">and be interested in identifying protein complexes and how they change between time points. </span></span></p><p class="P6"> </p><p class="P25"><span class="T9">D</span><span class="T3">ynamic graphs</span></p><p class="P11"><span> - What is a dynamic graph ?</span></p><p class="P3"><span class="T3"> </span><span class="T10">A dynamic graph </span><span class="T11">can be seen as multiple instances of </span><span class="T10">a graph whose edges change between two instances. This definition includes time-varying graphs whose edges change as a function of time </span><span class="T11">but also multigraphs </span><span class="T12">(graphs in</span><span class="T11"> which nodes </span><span class="T12">are</span><span class="T11"> connected with edges of different types</span><span class="T12">)</span><span class="T11"> if you segregate each edge type into </span><span class="T13">a separate</span><span class="T11"> </span><span class="T13">instance of the </span><span class="T11">graph. </span><span class="T14">Examples of </span><span class="T15">dynamic</span><span class="T14"> graphs are protein interaction networks </span><span class="T15">and</span><span class="T14"> gene co-expression networks </span><span class="T15">obtained </span><span class="T14">at different cell cycle or developmental stages</span><span class="T15"> or under different experimental conditions (e.g. control vs treatment vs disease). </span><span class="T16">With this definition, a dynamic graph can therefore be represented as a series of adjacency matrices.</span></p><p class="P11"> </p><p class="P11"><span> - Different approaches to mining dynamic graphs</span></p><p class="P2"><span class="T3"> </span><span class="T17">It is common to treat dynamic graphs in one of three ways:</span></p><ul><li><p class="P60" style="margin-left:0cm;"><span class="Bullet_20_Symbols" style="display:block;float:left;min-width:0.635cm;">•</span>Aggregation: <span class="odfLiEnd"/> </p><p class="P63" style="margin-left:0cm;"><span class="Bullet_20_Symbols" style="display:block;float:left;min-width:0cm"><!-- --></span><span class="T3">All instances are combined into one, for example by using a weighted average of the edge weights across instances. This has the advantage of reducing the size of the data and </span><span class="T20">can </span><span class="T3">be a way of addressing changes in individual edges over long period of times. This is also a good approach to take when assuming that the instances </span><span class="T19">are</span><span class="T3"> not different from each other </span><span class="T19">(</span><span class="T18">as, </span><span class="T19">for example, in</span><span class="T18"> the kernel-based integration </span><span class="T19">approach seen earlier)</span><span class="T3">. However, this approach could reveal patterns that don't exist if nodes belong to different clusters in different instances and any temporal pattern or correlation is lost.</span><span class="odfLiEnd"/> </p></li><li><p class="P61" style="margin-left:0cm;"><span class="Bullet_20_Symbols" style="display:block;float:left;min-width:0.635cm;">•</span>Splitting:<span class="odfLiEnd"/> </p><p class="P64" style="margin-left:0cm;"><span class="Bullet_20_Symbols" style="display:block;float:left;min-width:0cm"><!-- --></span><span class="T3">In this case, each </span><span class="T22">graph </span><span class="T3">instance is treated in isolation. Patterns found in each instance are then linked and analysed in post-processing steps. </span><span class="T22">In addition to the difficulty in devising adequate post-processing steps, t</span><span class="T3">he </span><span class="T43">problem</span><span class="T3"> here is that there is no guarantee that a structure inferred in one instance is the same in another. </span><span class="odfLiEnd"/> </p></li><li><p class="P62" style="margin-left:0cm;"><span class="Bullet_20_Symbols" style="display:block;float:left;min-width:0.635cm;">•</span>Evolutionary clustering:<span class="odfLiEnd"/> </p><p class="P65" style="margin-left:0cm;"><span class="Bullet_20_Symbols" style="display:block;float:left;min-width:0cm"><!-- --></span><span class="T21">T</span><span class="T3">his approach assumes that </span><span class="T23">there's continuity between instances, i.e. structures do not change dramatically between instances. Therefore, one can constrain analysis of one instance on </span><span class="T24">the analysis result from another instance or analyse two aggregated consecutive instances. </span><span class="T25">This </span><span class="T26">approach c</span><span class="T25">an work in some cases but the continuity assumption is generally not realistic. Abrupt changes in patterns </span><span class="T26">will make it fail and it is unsuitable for analysis of temporal patterns over long periods.</span><span class="odfLiEnd"/> </p></li></ul><p class="P15"> </p><p class="P52"><span class="T3">All the above treat time or experimental conditions separately from the nodes. A global approach treating time/conditions and nodes simultaneously would better capture evolving patterns. </span><span class="T33">One of the</span><span class="T30"> first </span><span class="T3">such </span><span class="T30">approach did so by </span><span class="T32">extending the modularity coefficient </span><span class="T28">[</span><span class="T29">1</span><span class="T28">] </span><span class="T32">to </span><span class="T27">multiple instances of a graph [</span><span class="T29">2</span><span class="T27">,</span><span class="T29">3</span><span class="T27">] by defining links between </span><span class="T31">graph</span><span class="T27"> instances. </span><span class="T34">Here, we'll introduce another global approach which treats genes, time and conditions as multiple dimensions </span><span class="T35">of</span><span class="T34"> the data.</span></p><p class="P53"> </p><p class="P26">Tensors</p><p class="P12"><span> <span class="T37">- What is a tensor ?</span></span></p><p class="P12"><span> <span class="T38">There are different definitions of tensors used in different fields but they all come down to the same concept that tensors are a generalization of scalars, vectors and matrices: a scalar is a rank zero tensor, a vector is a rank one tensor, a matrix a rank two tensor... Therefore for most practical purposes, a tensor is a multidimensional array. It's easy to see that a dynamic graph represented as a series of adjacency matrices is a three-dimensional tensor.</span></span></p><p class="P12"> </p><p class="P12"><span> - <span class="T40">Terminology and notation:</span></span></p><p class="P14"><span> <span class="T42">Although the notation and terminology are not fully standardized, many papers now </span><span class="T42">follow the conventions in [4] which we also adopt here. A tensor will be denoted using underlined bold face e.g. </span><span class="T44">X</span><span class="T42"> to distinguish it from the matrix </span><span class="T49">X</span><span class="T42">.</span></span></p><p class="P12"><span> <span class="T40">The order of a tensor is its number of dimensions also called modes (or sometimes ways). The equivalent of matrix rows and columns are fibers and when used as vectors, they are assumed to be column vectors. Slices are 2D sections of a tensor. See Figure 1 for a graphical representation of these terms for third-order tensors.</span></span></p><!--Next 'div' was a 'text:p'.--><div class="P12"><!--Next 'div' is emulating the top hight of a draw:frame.--><!--Next '
div' is a draw:frame.
--><div style="width:6.6929in; padding:0; float:left; position:relative; left:0cm; " class="fr1" id="Frame1"><!--Next 'div' was a 'draw:text-box'.--><div style="min-height:5.3665in;"><!--Next 'div' was a 'text:p'.--><div class="Caption"><!--Next 'div' is emulating the top hight of a draw:frame.--><!--Next '
div' is a draw:frame.
--><div style="height:4.6583in;width:6.8744in; padding:0; float:left; position:relative; left:0cm; " class="fr2" id="Image1"><img style="height:11.8321cm;width:17.461cm;" alt="" src=""/></div><!--Next 'div' added for floating.--><div style="position:relative; left:0cm;">Figure 1: Tensor terminology</div></div><div style="clear:both; line-height:0; width:0; height:0; margin:0; padding:0;"> </div></div></div></div><div style="clear:both; line-height:0; width:0; height:0; margin:0; padding:0;"> </div><p class="P13"><span> - <span class="T41">Working with tensors:</span></span></p><p class="P12"><span> <span class="T41">Most of the tasks we're interested in rely on transforming tensors into matrices using a process called matricization or unfolding. Matricization consists in rearranging the elements of the tensor into a matrix. The most commonly used way of doing this is called mode-n matricization which takes the mode-n fibers of the tensors and arranges them as columns of a matrix (Figure 2). The mode-n unfolding of </span><span class="T45">Z</span><span class="T41"> is denoted </span><span class="T50">Z</span><span class="T52">(n)</span><span class="T41">. The order of columns is not important as long as it is consistent across calculations. Sometimes it can be useful to represent a tensor as a vector, in a process called vectorization. Ordering of </span><span class="T41">the elements in the vector is also not important as long as it is consistent.</span></span></p><p class="P12"><span> <span class="T42">Although tensors can be multiplied together, we will only need the mode-n multiplication of a tensor with a matrix in which the mode-n fibers of the tensor are multiplied by the matrix. This is written </span><span class="T44">Z</span><span class="T42"> = </span><span class="T44">Y</span><span class="T42"> x</span><span class="T53">n</span><span class="T42"> </span><span class="T49">V</span><span class="T42"> and can be expressed in matricized form: </span><span class="T49">Z</span><span class="T54">(</span><span class="T53">n)</span><span class="T42"> = </span><span class="T49">VY</span><span class="T53">(n)</span><span class="T59">. </span><span class="T60">See Figure 3 for an intuitive graphical example.</span></span></p><p class="P12"><span class="T57"> </span><span class="T61">Working with matricized tensors also makes use of</span><span class="T58"> </span><span class="T62">various</span><span class="T58"> matrix products: the Kronecker product, the Khatri-Rao </span><span class="T62">product </span><span class="T58">and </span><span class="T62">the </span><span class="T58">Hadamard products. </span><span class="T68">See paragraphs 1 and 2 of [5] and chapter 1.4 of [6] for a more detailed introduction to tensor algebra.</span></p><!--Next 'div' was a 'text:p'.--><div class="P12"><!--Next 'div' is emulating the top hight of a draw:frame.--><!--Next '
div' is a draw:frame.
--><div style="width:6.6929in; padding:0; float:left; position:relative; left:0cm; " class="fr1" id="Frame2"><!--Next 'div' was a 'draw:text-box'.--><div style="min-height:3.4098in;"><!--Next 'div' was a 'text:p'.--><div class="Caption"><!--Next 'div' is emulating the top hight of a draw:frame.--><!--Next '
div' is a draw:frame.
--><div style="height:3.4098in;width:6.6929in; padding:0; float:left; position:relative; left:0cm; " class="fr3" id="Image2"><img style="height:8.6609cm;width:17cm;" alt="" src=""/></div><!--Next 'div' added for floating.--><div style="position:relative; left:0cm;">Figure 2: Matricization of a tensor</div></div><div style="clear:both; line-height:0; width:0; height:0; margin:0; padding:0;"> </div></div></div></div><div style="clear:both; line-height:0; width:0; height:0; margin:0; padding:0;"> </div><!--Next 'div' was a 'text:p'.--><div class="P12"><!--Next 'div' is emulating the top hight of a draw:frame.--><!--Next '
div' is a draw:frame.
--><div style="width:6.6929in; padding:0; float:left; position:relative; left:0cm; " class="fr1" id="Frame3"><!--Next 'div' was a 'draw:text-box'.--><div style="min-height:2.2929in;"><!--Next 'div' was a 'text:p'.--><div class="Caption"><!--Next 'div' is emulating the top hight of a draw:frame.--><!--Next '
div' is a draw:frame.
--><div style="height:2.2929in;width:6.6929in; padding:0; float:left; position:relative; left:0cm; " class="fr3" id="Image3"><img style="height:5.824cm;width:17cm;" alt="" src=""/></div><!--Next 'div' added for floating.--><div style="position:relative; left:0cm;">Figure 3: Mode-n multiplication with a matrix</div></div><div style="clear:both; line-height:0; width:0; height:0; margin:0; padding:0;"> </div></div></div></div><div style="clear:both; line-height:0; width:0; height:0; margin:0; padding:0;"> </div><p class="P27"><span class="T103">Graph nodes </span>clustering by matrix factorization</p><p class="P41"><span class="T71"> </span><span class="T72">Nodes of static graphs can be clustered by applying clustering methods to the adjacency matrix. Among these methods, matrix factorization approaches have already been successfully applied to some computational biology questions (see [</span><span class="T73">7</span><span class="T72">] for a review on non-negative matrix factorization (NMF) in computational biology, [</span><span class="T73">8</span><span class="T72">,</span><span class="T73">9</span><span class="T72">] for examples of spectral clustering). Spectral clustering and NMF solve a problem of the form: </span><span class="T86">A</span><span class="T72"> = </span><span class="T86">W</span><span class="T85"> </span><span class="T84">* </span><span class="T86">H</span><span class="T85"> </span><span class="T72">+ </span><span class="T85">E</span><span class="T72">. </span><span class="T70">A more general form of factorization is the singular value decomposition (SVD): </span><span class="T86">A</span><span class="T69"> = </span><span class="T101">U </span><span class="T102">*</span><span class="T101"> S </span><span class="T102">*</span><span class="T101"> V</span><span class="T107">T</span><span class="T63"> </span><span class="T66">where </span><span class="T65">columns of </span><span class="T67">U</span><span class="T65"> and </span><span class="T67">V</span><span class="T108">T</span><span class="T65"> are constrained to be orthogonal.</span><span class="T63"> </span><span class="T64">SVD corresponds to the decomposition of the matrix into the sum of outer products of vectors (Figure 4) </span></p><!--Next 'div' was a 'text:p'.--><div class="P44"><!--Next 'div' is emulating the top hight of a draw:frame.--><!--Next '
div' is a draw:frame.
--><div style="width:6.6929in; padding:0; float:left; position:relative; left:0cm; " class="fr1" id="Frame4"><!--Next 'div' was a 'draw:text-box'.--><div style="min-height:1.7583in;"><!--Next 'div' was a 'text:p'.--><div class="Caption"><!--Next 'div' is emulating the top hight of a draw:frame.--><!--Next '
div' is a draw:frame.
--><div style="height:1.6283in;width:6.6929in; padding:0; float:left; position:relative; left:0cm; " class="fr4" id="Image4"><img style="height:4.1359cm;width:17cm;" alt="" src=""/></div><!--Next 'div' added for floating.--><div style="position:relative; left:0cm;">Figure 4: Singular value decomposition</div></div><div style="clear:both; line-height:0; width:0; height:0; margin:0; padding:0;"> </div></div></div></div><div style="clear:both; line-height:0; width:0; height:0; margin:0; padding:0;"> </div><p class="P28"><span class="T110">Tensor</span> factorization</p><p class="P8"><span> <span class="T110">Tensor factorization can be seen as a natural extension of SVD to an arbitrary number of dimensions (Figure 5).</span></span></p><!--Next 'div' was a 'text:p'.--><div class="P10"><!--Next 'div' is emulating the top hight of a draw:frame.--><!--Next '
div' is a draw:frame.
--><div style="width:6.6929in; padding:0; float:left; position:relative; left:0cm; " class="fr1" id="Frame5"><!--Next 'div' was a 'draw:text-box'.--><div style="min-height:2.3693in;"><!--Next 'div' was a 'text:p'.--><div class="Caption"><!--Next 'div' is emulating the top hight of a draw:frame.--><!--Next '
div' is a draw:frame.
--><div style="height:2.3693in;width:6.6929in; padding:0; float:left; position:relative; left:0cm; " class="fr3" id="Image5"><img style="height:6.018cm;width:17cm;" alt="" src=""/></div><!--Next 'div' added for floating.--><div style="position:relative; left:0cm;">Figure 5: <span class="T122">A h</span>igher order SVD</div></div><div style="clear:both; line-height:0; width:0; height:0; margin:0; padding:0;"> </div></div></div><!--Next 'div' added for floating.--><div style="position:relative; left:0cm; clear:both">The general form is the Tucker decomposition which factorizes a tensor into a small core tensor and a set of matrices (<span class="T116">See </span>Figure 6). <span class="T112">See [</span><span class="T111">5</span><span class="T112">] for a </span><span class="T111">general</span><span class="T112"> introduction </span><span class="T111">and [6] for non-negative factorizations.</span></div></div><div style="clear:both; line-height:0; width:0; height:0; margin:0; padding:0;"> </div><p class="P10"><span class="T113"> The Tucker decomposition can be written in terms of matrix unfolding </span><span class="T114">of the tensor </span><span class="T47">X</span><span class="T113"> </span><span class="T114">(of size I x J x K):</span></p><p class="P40"><span class="T87">X</span><span class="T55">(1)</span><span class="T75"> ≈ </span><span class="T87">AG</span><span class="T55">(1)</span><span class="T75">(</span><span class="T87">C</span><span class="T75"> ⊗ </span><span class="T87">B</span><span class="T75">)</span><span class="T115">T</span><span class="T75"> </span></p><p class="P40"><span class="T87">X</span><span class="T55">(</span><span class="T56">2</span><span class="T55">)</span><span class="T75"> ≈ </span><span class="T88">B</span><span class="T87">G</span><span class="T55">(</span><span class="T56">2</span><span class="T55">)</span><span class="T75">(</span><span class="T87">C</span><span class="T75"> ⊗ </span><span class="T88">A</span><span class="T75">)</span><span class="T115">T</span><span class="T75"> </span></p><p class="P40"><span class="T87">X</span><span class="T55">(</span><span class="T56">3</span><span class="T55">)</span><span class="T75"> ≈ </span><span class="T88">C</span><span class="T87">G</span><span class="T55">(</span><span class="T56">3</span><span class="T55">)</span><span class="T75">(</span><span class="T88">B</span><span class="T75"> ⊗ </span><span class="T88">A</span><span class="T75">)</span><span class="T115">T</span><span class="T75"> </span></p><p class="P42"><span class="T75">where ⊗ is the Kronecker product and </span><span class="T87">A</span><span class="T75">, </span><span class="T87">B</span><span class="T75"> and </span><span class="T87">C</span><span class="T75"> are </span><span class="T77">factor matrices </span><span class="T79">of size I x R, J x S and K x T respectively where R,S and T are the number</span><span class="T83">s</span><span class="T79"> of </span><span class="T82">f</span><span class="T79">actor</span><span class="T82">s</span><span class="T79"> desired for each dimension. The factor matrices are u</span><span class="T75">sually constrained to have orthogonal columns. </span></p><p class="P42"><span class="T77">Like PCA and other matrix decompositions, the Tucker decomposition is not unique as the core can be modified without affecting the quality of the </span><span class="T78">solution </span><span class="T77">as long as the inverse modification is applied to the matrices. </span><span class="T74">Restricting the core tensor to a diagonal gives the CP (or PARAFAC) decomposition </span><span class="T75">(Figure 7, </span><span class="T81">which is equivalent to Figure 5</span><span class="T75">) </span><span class="T80">in which the same R factors are shared across the matrices. The CP decomposition</span><span class="T76"> can also be expressed in terms of matrices:</span></p><p class="P40"><span class="T87">X</span><span class="T55">(1)</span><span class="T75"> ≈ </span><span class="T87">A</span><span class="T75">(</span><span class="T87">C</span><span class="T75"> </span><span class="T76">⊙</span><span class="T75"> </span><span class="T87">B</span><span class="T75">)</span><span class="T115">T</span><span class="T75"> </span></p><p class="P40"><span class="T87">X</span><span class="T55">(</span><span class="T56">2</span><span class="T55">)</span><span class="T75"> ≈ </span><span class="T88">B</span><span class="T75">(</span><span class="T87">C</span><span class="T75"> </span><span class="T76">⊙</span><span class="T75"> </span><span class="T88">A</span><span class="T75">)</span><span class="T115">T</span><span class="T75"> </span></p><p class="P40"><span class="T87">X</span><span class="T55">(</span><span class="T56">3</span><span class="T55">)</span><span class="T75"> ≈ </span><span class="T88">C</span><span class="T75">(</span><span class="T88">B</span><span class="T75"> </span><span class="T76">⊙</span><span class="T75"> </span><span class="T88">A</span><span class="T75">)</span><span class="T115">T</span><span class="T75"> </span></p><p class="P40"><span class="T76">where ⊙ is the Khatri-Rao product. A form of non-negative tensor factorisation is obtained by </span><span class="Emphasis"><span class="T100">constraining</span></span><span class="T76"> </span><span class="T87">A</span><span class="T75">, </span><span class="T87">B</span><span class="T75"> and </span><span class="T87">C</span><span class="T75"> </span><span class="T76">to have non-negative entries.</span></p><!--Next 'div' was a 'text:p'.--><div class="P9"><!--Next 'div' is emulating the top hight of a draw:frame.--><!--Next '
div' is a draw:frame.
--><div style="width:6.6929in; padding:0; float:left; position:relative; left:0cm; " class="fr1" id="Frame6"><!--Next 'div' was a 'draw:text-box'.--><div style="min-height:3.8126in;"><!--Next 'div' was a 'text:p'.--><div class="Caption"><!--Next 'div' is emulating the top hight of a draw:frame.--><!--Next '
div' is a draw:frame.
--><div style="height:3.8126in;width:6.6929in; padding:0; float:left; position:relative; left:0cm; " class="fr3" id="Image6"><img style="height:9.683999999999999cm;width:17cm;" alt="" src=""/></div><!--Next 'div' added for floating.--><div style="position:relative; left:0cm;">Figure 6: Tucker decomposition of a third order tensor</div></div><div style="clear:both; line-height:0; width:0; height:0; margin:0; padding:0;"> </div></div></div></div><div style="clear:both; line-height:0; width:0; height:0; margin:0; padding:0;"> </div><!--Next 'div' was a 'text:p'.--><div class="P17"><!--Next 'div' is emulating the top hight of a draw:frame.--><!--Next '
div' is a draw:frame.
--><div style="width:6.6929in; padding:0; float:left; position:relative; left:0cm; " class="fr1" id="Frame7"><!--Next 'div' was a 'draw:text-box'.--><div style="min-height:3.7091in;"><!--Next 'div' was a 'text:p'.--><div class="Caption"><!--Next 'div' is emulating the top hight of a draw:frame.--><!--Next '
div' is a draw:frame.
--><div style="height:3.7091in;width:6.6929in; padding:0; float:left; position:relative; left:0cm; " class="fr3" id="Image7"><img style="height:9.421099999999999cm;width:17cm;" alt="" src=""/></div><!--Next 'div' added for floating.--><div style="position:relative; left:0cm;">Figure 7: The CP decomposition</div></div><div style="clear:both; line-height:0; width:0; height:0; margin:0; padding:0;"> </div></div></div></div><div style="clear:both; line-height:0; width:0; height:0; margin:0; padding:0;"> </div><p class="P29">Non-negative tensor factorisation of dynamic graphs</p><p class="P18"><span> This can be though<span class="T118">t</span> of as an extension of spectral clustering to more than one adjacency matrix. Our dynamic graph is represented by a third order tensor <span class="T46">G</span><span class="T118"> </span>of genes x genes x time<span class="T119"> points</span> (or experimental conditions) in which each frontal slice is <span class="T120">the</span> genes x genes adjacency matrix <span class="T118">of a weighted undirected graph</span>. <span class="T118">The edge weights are also assumed to be non-negative (≥ 0). Using a non-negative CP decomposition, we can factorize </span><span class="T46">G</span><span class="T118"> into non-negative factor matrices </span><span class="T51">A</span><span class="T118">, </span><span class="T51">B</span><span class="T118"> and </span><span class="T51">C</span><span class="T118">. Because the graph is undirected, the adjacency matrices are symmetric which leads to </span><span class="T51">A</span><span class="T118"> = </span><span class="T51">B</span><span class="T118">. </span><span class="T51">A</span><span class="T118"> is a genes x factors matrix and </span><span class="T51">C</span><span class="T118"> is a factors x time points matrix. Therefore, if we think of the factors as representing clusters, elements of </span><span class="T51">A</span><span class="T118"> can be interpreted as gene cluster memberships and elements of </span><span class="T51">C</span><span class="T118"> as measuring the temporal activity of the clusters.</span></span></p><p class="P18"> </p><p class="P30">Tools</p><p class="P45">- MATLAB toolboxes: tensor, nway (compatible with Octave)</p><p class="P5"><span class="T126">- R packages</span><span class="T125">*</span><span class="T126">: PTak, ThreeWay, rTensor</span></p><p class="P5"><span class="T126">- perl: Algorithms::Cube (</span><a href="https://github.com/jkh1/Perlstuff" class="Internet_20_link"><span class="T127">https://github.com/jkh1/Perlstuff</span></a><span class="T126">)</span></p><p class="P5"><span class="T126">- python</span><span class="T125">*</span><span class="T126">: scikit-tensor (</span><a href="https://github.com/mnick/scikit-tensor" class="Internet_20_link"><span class="T127">https://github.com/mnick/scikit-tensor</span></a><span class="T126">)</span></p><p class="P49"> </p><p class="P46">* non-negativity constraint is not available in R and python packages <span class="T130">(December 2015).</span></p><p class="P46"> </p><p class="P47">Example in R</p><p class="P55">## Load required package</p><p class="P55">library(<span class="T128">rTensor</span>)</p><p class="P55"> </p><p class="P56">## Where the data is</p><p class="P56">## This is a simulated dynamic graph with 30 nodes and 6 time points</p><p class="P56">dataDir <- "<span class="T129">~/Documents/Bio-IT/courses/Data_integration_and_mining_with_graphs/</span>dynamic_graph"</p><p class="P56"> </p><p class="P56">## Get list of adjacency matrices</p><p class="P56">## Each matrix is in a csv file</p><p class="P56">fileList <- dir(path=dataDir,pattern = ".csv")</p><p class="P56"> </p><p class="P56">## Read all adjacency matrices into an array</p><p class="P56">A <- array(as.numeric(NA),dim=c(30,30,6)) # There are 6 matrices of size 30 x 30 </p><p class="P56">for (i in 1:length(fileList)){</p><p class="P56"> A[,,i] <- as.matrix(read.delim(file.path(dataDir,fileList[i]), sep = ';', header=TRUE, row.names=1))</p><p class="P56">}</p><p class="P56"> </p><p class="P56">## Convert list of adjacency matrices to a tensor</p><p class="P56">G <- as.tensor(A)</p><p class="P56"> </p><p class="P56">## Perform CP factorization</p><p class="P56">cpG <- cp(G,num_components = 4)</p><p class="P56">## View the factor matrices</p><p class="P56">## Note that the first two are identical (up to numerical accuracy)</p><p class="P56">## due to the fact that the graph adjacency matrices are symmetric</p><p class="P56">cpG$U</p><p class="P55"> </p><p class="P47"> </p><p class="P47"> </p><p class="P48">Example in <span class="T131">perl</span></p><p class="P57">#!/usr/bin/perl</p><p class="P57">use strict;</p><p class="P57">use warnings;</p><p class="P57">use Algorithms::Matrix;</p><p class="P57">use Algorithms::Cube;</p><p class="P57"> </p><p class="P57"># Where the data is</p><p class="P57">my $dataDir = "$ENV{'HOME'}<span class="T129">/Documents/Bio-IT/courses/Data_integration_and_mining_with_graphs/dynamic_graph</span>";</p><p class="P57"> </p><p class="P57"># Number of time points</p><p class="P57">my $T = 6;</p><p class="P57"> </p><p class="P57"># Read dynamic graph from files as series of adjacency matrices</p><p class="P57">my @<span class="T135">G</span>;</p><p class="P57">foreach my $t(0..$T-1) {</p><p class="P59"> my ($r<span class="T134">ow</span>Labels,$colLabels);</p><p class="P58"> ($<span class="T135">G</span>[$t], <span class="T132">$rowLabels, $colLabels</span>) = </p><p class="P58"><span> Algorithms::Matrix->load_matrix("<span class="T133">$dataDir/</span>A$t.csv",";",1,1);</span></p><p class="P57">}</p><p class="P57"># Create Cube (i.e. third order tensor) object from matrices</p><p class="P54">my $<span class="T135">G</span> = Algorithms::Cube->new(@<span class="T135">G</span>);</p><p class="P54"> </p><p class="P54"># CP factorization with non-negativity constraint</p><p class="P54">my $r = 4; # Number of components</p><p class="P54">my ($A,$B,$C,@norms) = $<span class="T135">G</span>->nncp($r,symmetry=>1,norms=>1);</p><p class="P54"> </p><p class="P51"> </p><p class="P31">References:</p><p class="P7">1. Newman MEJ, Girvan M (2004) <a href="http://arxiv.org/pdf/cond-mat/0308217.pdf" class="Internet_20_link">Finding and evaluating community structure in networks</a>. Phys. Rev. E 69, 026113.</p><p class="P12"><span class="T39">2</span>. <a id="pone.0086028-Mucha1"/>Mucha PJ, Richardson T, Macon K, Porter MA, Onnela JP (2010) <a href="https://www.sciencemag.org/content/328/5980/876.full" class="Internet_20_link">Community structure in timedependent, multiscale, and multiplex networks</a>. Science 328: 876–878.</p><p class="P12"><span class="T39">3</span>. <a id="pone.0086028-Bassett1"/>Bassett DS, Porter MA, Wymbs NF, Grafton ST, Carlson JM, et al. (2013) <a href="https://people.maths.ox.ac.uk/porterm/papers/dani-chaos-final.pdf" class="Internet_20_link">Robust detection of dynamic community structure in networks</a>. Chaos 23: 013142. </p><p class="P16">4. Kiers HAL (2000) <a href="http://www.wiley.com/legacy/wileychi/chemometrics/582_ftp.pdf" class="Internet_20_link"><span class="T136">http://www.wiley.com/legacy/wileychi/chemometrics/582_ftp.pdf</span></a>. J. Chemometrics 14: 105-122.</p><p class="P36"><span class="T93">5</span><span class="T92">. Kolda TG, Bader BW (2009) </span><a href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.153.2059&rep=rep1&type=pdf" class="Internet_20_link">Tensor decompositions and applications</a><span class="T92">.</span><span class="T89"> </span><span class="T90">SIAM Rev., 51(3), 455–500. </span></p><p class="P43"><span class="T94">6.</span><span class="T91"> </span><span class="T123">Cichocki A, Zdunek R, Phan AH, Amari SI (2009) </span><a href="http://www.bsp.brain.riken.jp/~cia/NMF_NTF_book/NMF-NTF-book-Chapter1_2-contents.pdf" class="Internet_20_link"><span class="T69">Nonnegative matrix and tensor factorizations: applications to exploratory multi-way data analysis and blind source separation</span></a><span class="T124">. John Wiley & Sons.</span></p><p class="P39"><span class="T95">7</span><span class="T98">. </span><span class="T97">Devarajan K (2008) </span><a href="http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000029" class="Internet_20_link"><span class="T97">Nonnegative matrix factorization: an analytical and interpretive tool in computational biology</span></a><span class="T97">. PLoS Comput Biol 4(7):e1000029.</span></p><p class="P35"><span class="T104">8</span><span class="T106">. </span><span class="T105">Kluger Y, Basri R, Chang JT, et al. </span><span class="T106">(2003) </span><a href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC430175/" class="Internet_20_link"><span class="T105">Spectral biclustering of microarray data: coclustering genes and conditions</span></a><span class="T105">. Genome Res. 13(4):703–16.</span></p><p class="P38"><span class="T99">9</span><span class="T98">. Imangaliyev S, Keijser B, Crielaard W, Tsivtsivadze E (2015) </span><a id="tm005"/><a href="http://www.sciencedirect.com/science/article/pii/S1046202315001231" class="Internet_20_link"><span class="T96">Personalized microbial network inference via co-regularized spectral clustering</span></a><span class="T96">. </span><span class="T98">Methods 83:28-35.</span></p><p class="P37"><a href="https://github.com/mnick/scikit-tensor" class="Internet_20_link"/></p></body></html>