-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdataload.py
executable file
·55 lines (46 loc) · 1.34 KB
/
dataload.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import torch
from torch.utils.data import Dataset
import dataGetter
import numpy as np
import args
class mydata(Dataset):
def __init__(self, mode='train'):
self.mode = mode
self.imgsGetter = dataGetter.DataGetter(mode=self.mode)
self.imgsPath, self.labels = self.imgsGetter.getPathsAndLables()
def __getitem__(self, index):
imgPath = self.imgsPath[index]
label = self.labels[index]
img = self.imgsGetter.getSinalData(imgPath)
imgF = torch.zeros((1, 80, 256, 256))
imgF[0] = torch.from_numpy(img)
return imgF, label, imgPath
def __len__(self):
return len(self.labels)
seed = 10000001
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)
args1 = args.args()
train_dataset = mydata(mode='train')
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args1.bactsizeTrain,
shuffle=True,
num_workers=8,
drop_last=True
)
test_dataset = mydata(mode='test')
test_loader = torch.utils.data.DataLoader(
test_dataset,
batch_size=args1.bactsizeTest,
num_workers=8,
drop_last=False
)
val_dataset = mydata(mode='val')
val_loader = torch.utils.data.DataLoader(
val_dataset,
batch_size=args1.bactsizeVal,
num_workers=8,
drop_last=False
)