-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathL.LatLng.UTM.js
647 lines (525 loc) · 21.1 KB
/
L.LatLng.UTM.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
/*
* Extends L.LatLng to convert easily to UTM WGS84 coordinates
* and print with the desired format
*/
(function(L) {
if (typeof L === 'undefined') {
throw new Error('Leaflet must be included first');
}
// Constructor for 'class' L.Utm
L.Utm = function(x, y, zone, band, southHemi) {
this.x = +x;
this.y = +y;
this.zone = zone;
this.band = band;
this.southHemi = southHemi;
};
L.Utm.setDefaultOptions = function(o) {
// o can be an object or a function
L.Utm.prototype._defaultOptions = o;
};
L.Utm.prototype = {
// convert to string. Using the options you can
// specify another format.
toString: function(options) {
var def = {
decimals: 1,
sep: ',',
format: '{x}{sep} {y}{sep} {zone}{band}{sep} {datum}',
north: 'North',
south: 'South'
};
if (this._defaultOptions) {
// The user has the possibility to change the default options
var aux = this._defaultOptions;
if (typeof aux === 'function') aux = aux(options, def);
def = L.extend(def, aux);
}
options = L.extend(def, options);
var o = this.dic();
o.x = o.x.toFixed(options.decimals);
o.y = o.y.toFixed(options.decimals);
o.hemi = o.southHemi ? options.south : options.north;
o.sep = options.sep;
o.datum = 'WGS84';
return L.Util.template(options.format, o);
},
// returns a L.LatLng object
latLng: function(noExcep) {
try {
var ll = UC().UTM2LatLon(this);
return L.latLng(ll);
} catch (e) {
if (noExcep) return null;
throw e;
}
},
// convert to L.LatLng to check equality
equals: function(other) {
try {
return this.latLng().equals(other.latLng());
} catch (e) {
return false;
}
},
// returns a new object normalized to the proper zone, band...
normalize: function() {
var tmp = this.latLng(true);
return tmp ? tmp.utm() : null;
},
// returns a simple dictionary,
// with optional easting and northing values.
dic: function(eastingNorthing) {
var ret = {
x: this.x,
y: this.y,
zone: this.zone,
band: this.band,
southHemi: this.southHemi
};
if (eastingNorthing) {
ret.easting = this.x;
ret.northing = this.y;
}
return ret;
},
clone: function() {
return L.utm(this);
}
};
// factory to create Utm instances.
L.utm = function(x, y, zone, band, southHemi) {
if (x === undefined || x === null) {
return x;
}
if (x instanceof L.Utm) {
return x;
}
if (typeof x === 'object' && 'x' in x && 'y' in x && 'zone' in x) {
return new L.Utm(x.x, x.y, x.zone, x.band, x.southHemi);
}
return new L.Utm(x, y, zone, band, southHemi);
};
////////////////////////////
// Prototype in LatLng to get an Utm object.
// if zone is null, it is calculated.
L.LatLng.prototype.utm = function(zone, southHemi) {
var dic = UC().LatLon2UTM(
this.lat,
this.lng,
zone,
southHemi);
return L.utm(dic);
};
/////////////////////////////
// from http://home.hiwaay.net/~taylorc/toolbox/geography/geoutm.html
// Try to keep as unmodified as possible
/*eslint-disable */
function UC() {
var pi = 3.14159265358979;
/* Ellipsoid model constants (actual values here are for WGS84) */
var sm_a = 6378137.0;
var sm_b = 6356752.314;
var sm_EccSquared = 6.69437999013e-03;
var UTMScaleFactor = 0.9996;
/*
* DegToRad
*
* Converts degrees to radians.
*
*/
function DegToRad(deg) { return (deg / 180.0 * pi); }
/*
* RadToDeg
*
* Converts radians to degrees.
*
*/
function RadToDeg(rad) { return (rad / pi * 180.0); }
/*
* ArcLengthOfMeridian
*
* Computes the ellipsoidal distance from the equator to a point at a
* given latitude.
*
* Reference: Hoffmann-Wellenhof, B., Lichtenegger, H., and Collins, J.,
* GPS: Theory and Practice, 3rd ed. New York: Springer-Verlag Wien, 1994.
*
* Inputs:
* phi - Latitude of the point, in radians.
*
* Globals:
* sm_a - Ellipsoid model major axis.
* sm_b - Ellipsoid model minor axis.
*
* Returns:
* The ellipsoidal distance of the point from the equator, in meters.
*
*/
function ArcLengthOfMeridian(phi) {
var alpha, beta, gamma, delta, epsilon, n;
var result;
/* Precalculate n */
n = (sm_a - sm_b) / (sm_a + sm_b);
/* Precalculate alpha */
alpha =
((sm_a + sm_b) / 2.0) * (1.0 + (Math.pow(n, 2.0) / 4.0) + (Math.pow(n, 4.0) / 64.0));
/* Precalculate beta */
beta =
(-3.0 * n / 2.0) + (9.0 * Math.pow(n, 3.0) / 16.0) + (-3.0 * Math.pow(n, 5.0) / 32.0);
/* Precalculate gamma */
gamma = (15.0 * Math.pow(n, 2.0) / 16.0) + (-15.0 * Math.pow(n, 4.0) / 32.0);
/* Precalculate delta */
delta = (-35.0 * Math.pow(n, 3.0) / 48.0) + (105.0 * Math.pow(n, 5.0) / 256.0);
/* Precalculate epsilon */
epsilon = (315.0 * Math.pow(n, 4.0) / 512.0);
/* Now calculate the sum of the series and return */
result = alpha * (phi + (beta * Math.sin(2.0 * phi)) + (gamma * Math.sin(4.0 * phi)) +
(delta * Math.sin(6.0 * phi)) + (epsilon * Math.sin(8.0 * phi)));
return result;
}
/*
* UTMCentralMeridian
*
* Determines the central meridian for the given UTM zone.
*
* Inputs:
* zone - An integer value designating the UTM zone, range [1,60].
*
* Returns:
* The central meridian for the given UTM zone, in radians, or zero
* if the UTM zone parameter is outside the range [1,60].
* Range of the central meridian is the radian equivalent of [-177,+177].
*
*/
function UTMCentralMeridian(zone) {
var cmeridian;
cmeridian = DegToRad(-183.0 + (zone * 6.0));
return cmeridian;
}
/*
* FootpointLatitude
*
* Computes the footpoint latitude for use in converting transverse
* Mercator coordinates to ellipsoidal coordinates.
*
* Reference: Hoffmann-Wellenhof, B., Lichtenegger, H., and Collins, J.,
* GPS: Theory and Practice, 3rd ed. New York: Springer-Verlag Wien, 1994.
*
* Inputs:
* y - The UTM northing coordinate, in meters.
*
* Returns:
* The footpoint latitude, in radians.
*
*/
function FootpointLatitude(y) {
var y_, alpha_, beta_, gamma_, delta_, epsilon_, n;
var result;
/* Precalculate n (Eq. 10.18) */
n = (sm_a - sm_b) / (sm_a + sm_b);
/* Precalculate alpha_ (Eq. 10.22) */
/* (Same as alpha in Eq. 10.17) */
alpha_ = ((sm_a + sm_b) / 2.0) * (1 + (Math.pow(n, 2.0) / 4) + (Math.pow(n, 4.0) / 64));
/* Precalculate y_ (Eq. 10.23) */
y_ = y / alpha_;
/* Precalculate beta_ (Eq. 10.22) */
beta_ = (3.0 * n / 2.0) + (-27.0 * Math.pow(n, 3.0) / 32.0) +
(269.0 * Math.pow(n, 5.0) / 512.0);
/* Precalculate gamma_ (Eq. 10.22) */
gamma_ = (21.0 * Math.pow(n, 2.0) / 16.0) + (-55.0 * Math.pow(n, 4.0) / 32.0);
/* Precalculate delta_ (Eq. 10.22) */
delta_ = (151.0 * Math.pow(n, 3.0) / 96.0) + (-417.0 * Math.pow(n, 5.0) / 128.0);
/* Precalculate epsilon_ (Eq. 10.22) */
epsilon_ = (1097.0 * Math.pow(n, 4.0) / 512.0);
/* Now calculate the sum of the series (Eq. 10.21) */
result = y_ + (beta_ * Math.sin(2.0 * y_)) + (gamma_ * Math.sin(4.0 * y_)) +
(delta_ * Math.sin(6.0 * y_)) + (epsilon_ * Math.sin(8.0 * y_));
return result;
}
/*
* MapLatLonToXY
*
* Converts a latitude/longitude pair to x and y coordinates in the
* Transverse Mercator projection. Note that Transverse Mercator is not
* the same as UTM; a scale factor is required to convert between them.
*
* Reference: Hoffmann-Wellenhof, B., Lichtenegger, H., and Collins, J.,
* GPS: Theory and Practice, 3rd ed. New York: Springer-Verlag Wien, 1994.
*
* Inputs:
* phi - Latitude of the point, in radians.
* lambda - Longitude of the point, in radians.
* lambda0 - Longitude of the central meridian to be used, in radians.
*
* Outputs:
* xy - A 2-element array containing the x and y coordinates
* of the computed point.
*
* Returns:
* The function does not return a value.
*
*/
function MapLatLonToXY(phi, lambda, lambda0, xy) {
var N, nu2, ep2, t, t2, l;
var l3coef, l4coef, l5coef, l6coef, l7coef, l8coef;
var tmp;
/* Precalculate ep2 */
ep2 = (Math.pow(sm_a, 2.0) - Math.pow(sm_b, 2.0)) / Math.pow(sm_b, 2.0);
/* Precalculate nu2 */
nu2 = ep2 * Math.pow(Math.cos(phi), 2.0);
/* Precalculate N */
N = Math.pow(sm_a, 2.0) / (sm_b * Math.sqrt(1 + nu2));
/* Precalculate t */
t = Math.tan(phi);
t2 = t * t;
tmp = (t2 * t2 * t2) - Math.pow(t, 6.0);
/* Precalculate l */
l = lambda - lambda0;
/* Precalculate coefficients for l**n in the equations below
so a normal human being can read the expressions for easting
and northing
-- l**1 and l**2 have coefficients of 1.0 */
l3coef = 1.0 - t2 + nu2;
l4coef = 5.0 - t2 + 9 * nu2 + 4.0 * (nu2 * nu2);
l5coef = 5.0 - 18.0 * t2 + (t2 * t2) + 14.0 * nu2 - 58.0 * t2 * nu2;
l6coef = 61.0 - 58.0 * t2 + (t2 * t2) + 270.0 * nu2 - 330.0 * t2 * nu2;
l7coef = 61.0 - 479.0 * t2 + 179.0 * (t2 * t2) - (t2 * t2 * t2);
l8coef = 1385.0 - 3111.0 * t2 + 543.0 * (t2 * t2) - (t2 * t2 * t2);
/* Calculate easting (x) */
xy[0] = N * Math.cos(phi) * l +
(N / 6.0 * Math.pow(Math.cos(phi), 3.0) * l3coef * Math.pow(l, 3.0)) +
(N / 120.0 * Math.pow(Math.cos(phi), 5.0) * l5coef * Math.pow(l, 5.0)) +
(N / 5040.0 * Math.pow(Math.cos(phi), 7.0) * l7coef * Math.pow(l, 7.0));
/* Calculate northing (y) */
xy[1] = ArcLengthOfMeridian(phi) +
(t / 2.0 * N * Math.pow(Math.cos(phi), 2.0) * Math.pow(l, 2.0)) +
(t / 24.0 * N * Math.pow(Math.cos(phi), 4.0) * l4coef * Math.pow(l, 4.0)) +
(t / 720.0 * N * Math.pow(Math.cos(phi), 6.0) * l6coef * Math.pow(l, 6.0)) +
(t / 40320.0 * N * Math.pow(Math.cos(phi), 8.0) * l8coef * Math.pow(l, 8.0));
return;
}
/*
* MapXYToLatLon
*
* Converts x and y coordinates in the Transverse Mercator projection to
* a latitude/longitude pair. Note that Transverse Mercator is not
* the same as UTM; a scale factor is required to convert between them.
*
* Reference: Hoffmann-Wellenhof, B., Lichtenegger, H., and Collins, J.,
* GPS: Theory and Practice, 3rd ed. New York: Springer-Verlag Wien, 1994.
*
* Inputs:
* x - The easting of the point, in meters.
* y - The northing of the point, in meters.
* lambda0 - Longitude of the central meridian to be used, in radians.
*
* Outputs:
* philambda - A 2-element containing the latitude and longitude
* in radians.
*
* Returns:
* The function does not return a value.
*
* Remarks:
* The local variables Nf, nuf2, tf, and tf2 serve the same purpose as
* N, nu2, t, and t2 in MapLatLonToXY, but they are computed with respect
* to the footpoint latitude phif.
*
* x1frac, x2frac, x2poly, x3poly, etc. are to enhance readability and
* to optimize computations.
*
*/
function MapXYToLatLon(x, y, lambda0, philambda) {
var phif, Nf, Nfpow, nuf2, ep2, tf, tf2, tf4, cf;
var x1frac, x2frac, x3frac, x4frac, x5frac, x6frac, x7frac, x8frac;
var x2poly, x3poly, x4poly, x5poly, x6poly, x7poly, x8poly;
/* Get the value of phif, the footpoint latitude. */
phif = FootpointLatitude(y);
/* Precalculate ep2 */
ep2 = (Math.pow(sm_a, 2.0) - Math.pow(sm_b, 2.0)) / Math.pow(sm_b, 2.0);
/* Precalculate cos (phif) */
cf = Math.cos(phif);
/* Precalculate nuf2 */
nuf2 = ep2 * Math.pow(cf, 2.0);
/* Precalculate Nf and initialize Nfpow */
Nf = Math.pow(sm_a, 2.0) / (sm_b * Math.sqrt(1 + nuf2));
Nfpow = Nf;
/* Precalculate tf */
tf = Math.tan(phif);
tf2 = tf * tf;
tf4 = tf2 * tf2;
/* Precalculate fractional coefficients for x**n in the equations
below to simplify the expressions for latitude and longitude. */
x1frac = 1.0 / (Nfpow * cf);
Nfpow *= Nf; /* now equals Nf**2) */
x2frac = tf / (2.0 * Nfpow);
Nfpow *= Nf; /* now equals Nf**3) */
x3frac = 1.0 / (6.0 * Nfpow * cf);
Nfpow *= Nf; /* now equals Nf**4) */
x4frac = tf / (24.0 * Nfpow);
Nfpow *= Nf; /* now equals Nf**5) */
x5frac = 1.0 / (120.0 * Nfpow * cf);
Nfpow *= Nf; /* now equals Nf**6) */
x6frac = tf / (720.0 * Nfpow);
Nfpow *= Nf; /* now equals Nf**7) */
x7frac = 1.0 / (5040.0 * Nfpow * cf);
Nfpow *= Nf; /* now equals Nf**8) */
x8frac = tf / (40320.0 * Nfpow);
/* Precalculate polynomial coefficients for x**n.
-- x**1 does not have a polynomial coefficient. */
x2poly = -1.0 - nuf2;
x3poly = -1.0 - 2 * tf2 - nuf2;
x4poly = 5.0 + 3.0 * tf2 + 6.0 * nuf2 - 6.0 * tf2 * nuf2 - 3.0 * (nuf2 * nuf2) -
9.0 * tf2 * (nuf2 * nuf2);
x5poly = 5.0 + 28.0 * tf2 + 24.0 * tf4 + 6.0 * nuf2 + 8.0 * tf2 * nuf2;
x6poly = -61.0 - 90.0 * tf2 - 45.0 * tf4 - 107.0 * nuf2 + 162.0 * tf2 * nuf2;
x7poly = -61.0 - 662.0 * tf2 - 1320.0 * tf4 - 720.0 * (tf4 * tf2);
x8poly = 1385.0 + 3633.0 * tf2 + 4095.0 * tf4 + 1575 * (tf4 * tf2);
/* Calculate latitude */
philambda[0] = phif + x2frac * x2poly * (x * x) + x4frac * x4poly * Math.pow(x, 4.0) +
x6frac * x6poly * Math.pow(x, 6.0) + x8frac * x8poly * Math.pow(x, 8.0);
/* Calculate longitude */
philambda[1] = lambda0 + x1frac * x + x3frac * x3poly * Math.pow(x, 3.0) +
x5frac * x5poly * Math.pow(x, 5.0) + x7frac * x7poly * Math.pow(x, 7.0);
return;
}
/*
* LatLonToUTMXY
*
* Converts a latitude/longitude pair to x and y coordinates in the
* Universal Transverse Mercator projection.
*
* Inputs:
* lat - Latitude of the point, in radians.
* lon - Longitude of the point, in radians.
* zone - UTM zone to be used for calculating values for x and y.
* If zone is less than 1 or greater than 60, the routine
* will determine the appropriate zone from the value of lon.
*
* Outputs:
* xy - A 2-element array where the UTM x and y values will be stored.
*
* Returns:
* The UTM zone used for calculating the values of x and y.
*
*/
function LatLonToUTMXY(lat, lon, zone, xy) {
MapLatLonToXY(lat, lon, UTMCentralMeridian(zone), xy);
/* Adjust easting and northing for UTM system. */
xy[0] = xy[0] * UTMScaleFactor + 500000.0;
xy[1] = xy[1] * UTMScaleFactor;
if (xy[1] < 0.0) xy[1] = xy[1] + 10000000.0;
return zone;
}
/*
* UTMXYToLatLon
*
* Converts x and y coordinates in the Universal Transverse Mercator
* projection to a latitude/longitude pair.
*
* Inputs:
* x - The easting of the point, in meters.
* y - The northing of the point, in meters.
* zone - The UTM zone in which the point lies.
* southhemi - True if the point is in the southern hemisphere;
* false otherwise.
*
* Outputs:
* latlon - A 2-element array containing the latitude and
* longitude of the point, in radians.
*
* Returns:
* The function does not return a value.
*
*/
function UTMXYToLatLon(x, y, zone, southhemi, latlon) {
var cmeridian;
x -= 500000.0;
x /= UTMScaleFactor;
/* If in southern hemisphere, adjust y accordingly. */
if (southhemi) y -= 10000000.0;
y /= UTMScaleFactor;
cmeridian = UTMCentralMeridian(zone);
MapXYToLatLon(x, y, cmeridian, latlon);
return;
}
/*eslint-enable */
// Original code until here
////////////////////////////
var bands = 'CDEFGHJKLMNPQRSTUVWX';
var nBandIdx = bands.indexOf('N');
function calcBand(lat) {
if (lat < -80.0 || lat > 84.0) return ''
var bandIdx = Math.floor((lat + 80.0) / 8);
return bands.charAt(bandIdx) || 'X'; // cover extra X band
}
function calcZone(band, lon) {
var zone = Math.floor((lon + 180.0) / 6) + 1;
if (lon == 180.0) zone = 60;
if (band === 'V' && lon > 3.0 && lon < 7.0) {
// Norway exception:
zone = 32;
} else if (band === 'X') {
// Special zones for Svalbard
if (lon >= 0.0 && lon < 9.0) {
zone = 31;
}
else if (lon >= 9.0 && lon < 21.0) {
zone = 33;
}
else if (lon >= 21.0 && lon < 33.0) {
zone = 35;
}
else if (lon >= 33.0 && lon < 42.0) {
zone = 37;
}
}
return zone;
}
function UTM2LatLon(utm) {
if (utm.southHemi === undefined && utm.band === undefined) {
throw 'Undefined hemisphere in ' + utm.toString();
}
var southHemi = utm.southHemi;
var band = utm.band;
if (band && band.length == 1
&& bands.indexOf(band.toUpperCase()) >= 0) {
southHemi = bands.indexOf(band.toUpperCase()) < nBandIdx;
}
var latlon = new Array(2);
UTMXYToLatLon(utm.x, utm.y, utm.zone, southHemi, latlon);
if (Math.abs(latlon[0]) > pi/2) return null;
return {lat: RadToDeg(latlon[0]), lng: RadToDeg(latlon[1])};
}
function LatLon2UTM(lat, lon, zone, southHemi) {
function wrapLon(x) {
// don't use L.Util.wrapNum to be 0.7 compatible
var max = 180,
min = -180,
d = max - min;
return x === max ? x : ((x - min) % d + d) % d + min;
}
lon = wrapLon(lon);
var band = calcBand(lat);
zone = zone || calcZone(band, lon);
southHemi = (southHemi === undefined || southHemi === null) ?
lat < 0 : southHemi;
var xy = new Array(2);
zone = LatLonToUTMXY(DegToRad(lat), DegToRad(lon), zone, xy);
// This is the object returned
var ret = {
x: xy[0],
y: xy[1],
zone: zone,
band: band,
southHemi: southHemi
};
return ret;
}
return {
LatLon2UTM: LatLon2UTM,
UTM2LatLon: UTM2LatLon,
};
}
})(L);