-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathdata_preprocess.py
388 lines (351 loc) · 18.5 KB
/
data_preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
import glob
import json
import os
import codecs
import numpy as np
import time
import sys
import random
from keras.preprocessing.sequence import pad_sequences
from nltk.stem import PorterStemmer
import gensim
from utils import split_sent, normalize_unicode, get_word_vector, unsplit_query, invert_dict, merge_two_dicts
from attention_model import DSSM_NUM_NEGS, ATTENTION_DEEP_LEVEL
PAD_WORD_INDEX = 0
OOV_WORD_INDEX = 1
MAX_TWEET_LENGTH = 150
MAX_URL_LENGTH = 120
DEFAULT_URL = "http://www.abc.com"
ps = PorterStemmer()
def read_sentences(path, vocab, is_train, repr="word", ngram_size=3, test_vocab=None):
questions = []
max_len = 0
with codecs.open(path, "r", "UTF-8") as f:
for i, line in enumerate(f):
q_tokens = split_sent(normalize_unicode(line.strip()), repr, ngram_size)
token_ids = []
if len(q_tokens) > max_len:
max_len = len(q_tokens)
for token in q_tokens:
if token not in vocab[repr]:
if is_train:
vocab[repr][token] = len(vocab[repr])
elif repr == "word" and token not in test_vocab[repr]:
test_vocab[repr][token] = len(vocab[repr]) + len(test_vocab[repr])
if token in vocab[repr]:
token_ids.append(vocab[repr][token])
elif repr == "word":
token_ids.append(test_vocab[repr][token])
else:
token_ids.append(OOV_WORD_INDEX)
questions.append(token_ids)
return questions, max_len
def read_urls(path, vocab, is_train, repr="3gram", ngram_size=3):
urls = []
max_len = 0
if os.path.exists(path):
with codecs.open(path, "r", "UTF-8") as f:
for i, line in enumerate(f):
line = line.strip()
if len(line) == 0:
line = DEFAULT_URL
marker_index = line.find('?')
url = line[7:marker_index]
if sys.version_info[0] < 3:
q_tokens = split_sent(normalize_unicode(unicode(url)), repr, ngram_size)
else:
q_tokens = split_sent(normalize_unicode(str(url)), repr, ngram_size)
token_ids = []
if len(q_tokens) > max_len:
max_len = len(q_tokens)
for token in q_tokens:
if token not in vocab['url']:
if is_train:
vocab['url'][token] = len(vocab['url'])
if token in vocab['url']:
token_ids.append(vocab['url'][token])
else:
token_ids.append(OOV_WORD_INDEX)
urls.append(token_ids)
return urls, max_len
def read_metadata(path):
ids = []
with open(path) as f:
for i, line in enumerate(f):
groups = line.strip().split()
ids.append(" ".join(groups[:4]))
return ids
def read_relevance(path):
sims = []
if os.path.exists(path):
with open(path) as f:
for i, line in enumerate(f):
sims.append(int(line.strip()))
return sims
def inject_word_weight(query_word_input, vocab_inv, weights):
num_samples, max_query_len = query_word_input.shape
query_word_weight = np.ones((num_samples, ATTENTION_DEEP_LEVEL, max_query_len))
for i in range(num_samples):
for j in range(max_query_len):
#stem_word = ps.stem(vocab_inv[query_word_input[i][j]])
word = vocab_inv[query_word_input[i][j]]
if word in weights['unigram']:
query_word_weight[i][0][j] = weights['unigram'][word]
else:
query_word_weight[i][0][j] = 0
if j > 0 and query_word_input[i][j-1] != PAD_WORD_INDEX:
if query_word_input[i][j] == PAD_WORD_INDEX:
unigram = vocab_inv[query_word_input[i][j-1]]
if unigram in weights['unigram']:
query_word_weight[i][1][j] = weights['unigram'][unigram]
else:
bigram = "%s %s" % (vocab_inv[query_word_input[i][j-1]],
vocab_inv[query_word_input[i][j]])
if bigram in weights['bigram']:
query_word_weight[i][1][j] = weights['bigram'][bigram]
elif j == 0:
unigram = vocab_inv[query_word_input[i][j]]
if unigram in weights['unigram']:
query_word_weight[i][1][j] = weights['unigram'][unigram]
else:
query_word_weight[i][1][j] = 0
return query_word_weight
def inject_ngram_weight(query_ngram_input, vocab_inv, weights):
num_samples, max_query_len = query_ngram_input.shape
query_ngram_weight = np.zeros((num_samples, ATTENTION_DEEP_LEVEL, max_query_len))
for i in range(num_samples):
for j in range(max_query_len):
trigram = vocab_inv[query_ngram_input[i][j]]
if trigram in weights['3gram']:
query_ngram_weight[i][0][j] = weights['3gram'][trigram]
for k in range(1, ATTENTION_DEEP_LEVEL):
# a hard-coded 3 is because the moving window length of CNN is 3
if j-3*k >= 0 and query_ngram_input[i][j-3*k] != PAD_WORD_INDEX:
ngram = ''
for t in range(j-3*k, j+1, 3):
ngram = ngram + vocab_inv[query_ngram_input[i][t]]
if ngram in weights["%dgram" % (3*(k+1))]:
query_ngram_weight[i][k][j] = weights["%dgram" % (3*(k+1))][ngram]
return query_ngram_weight
def compute_overlap_feat(query_word_input, doc_word_input, vocab_inv, weights):
num_samples, max_query_len = query_word_input.shape
_, max_doc_len = doc_word_input.shape
overlap_feats = np.zeros((num_samples, 4)) # read overlap feature
for i in range(num_samples):
match, idf_match = 0.0, 0.0
bigram_match, bigram_idf_match = 0.0, 0.0
total_word, total_idf, total_bigram_idf = 0.0, 0.0, 0.0
for j in range(max_query_len):
word = vocab_inv[query_word_input[i][j]]
bigram = None
if j > 0 and query_word_input[i][j] != PAD_WORD_INDEX:
bigram = "%s %s" % (vocab_inv[query_word_input[i][j-1]], vocab_inv[query_word_input[i][j]])
total_bigram_idf += float(weights['bigram'][bigram]) if bigram in weights['bigram'] else 1.0
for k in range(max_doc_len):
word2 = vocab_inv[doc_word_input[i][k]]
if query_word_input[i][j] != PAD_WORD_INDEX and query_word_input[i][j] != OOV_WORD_INDEX \
and word == word2:
match += 1.0
idf_match += float(weights['unigram'][word]) if word in weights['unigram'] else 1.0
break
for k in range(max_doc_len):
bigram2 = None
if k > 0 and doc_word_input[i][k] != PAD_WORD_INDEX:
bigram2 = "%s %s" % (vocab_inv[doc_word_input[i][k-1]], vocab_inv[doc_word_input[i][k]])
if bigram != None and bigram == bigram2:
bigram_match += 1.0
bigram_idf_match += float(weights['bigram'][bigram]) if bigram in weights['bigram'] else 1.0
break
if query_word_input[i][j] != PAD_WORD_INDEX and query_word_input[i][j] != OOV_WORD_INDEX:
total_word += 1.0
total_idf += float(weights['unigram'][word]) if word in weights['unigram'] else 1.0
overlap_feats[i][0] = match / total_word
overlap_feats[i][1] = idf_match / total_idf
overlap_feats[i][2] = bigram_match / max(total_word-1, 1)
overlap_feats[i][3] = bigram_idf_match / max(total_bigram_idf, 0.01)
return overlap_feats
def create_masks(data, args):
num_samples, max_len = data.shape
masks = np.ones((num_samples, max_len), dtype=np.int8)
for i in range(num_samples):
for j in range(max_len):
if data[i][j] == PAD_WORD_INDEX:
masks[i][j] = 0
return masks
# generate data from disks to machine readable format
def gen_data(path, datasets, vocab, test_vocab, is_train, max_query_len, max_doc_len, max_url_len, args):
if is_train:
vocab['word']['PAD_WORD_INDEX'] = PAD_WORD_INDEX
vocab['word']['OOV_WORD_INDEX'] = OOV_WORD_INDEX
vocab['3gram']['PAD_3GRAM_INDEX'] = PAD_WORD_INDEX
vocab['3gram']['OOV_3GRAM_INDEX'] = OOV_WORD_INDEX
vocab['url']['PAD_URL_INDEX'] = PAD_WORD_INDEX
vocab['url']['OOV_URL_INDEX'] = OOV_WORD_INDEX
query_word_list, doc_word_list, query_3gram_list, doc_3gram_list = [], [], [], []
all_url_list, all_ids_list, all_sim_list = [], [], []
t0 = time.time()
for data_name in datasets: # there can be multiple data sets combined as the train or test data
data_folder = "%s/%s" % (path, data_name)
print('load dataset %s' % data_name)
t = time.time()
q1_word_list, max_q1_word_len = read_sentences("%s/a.toks" % data_folder, vocab, is_train,
"word", test_vocab=test_vocab)
q2_word_list, max_q2_word_len = read_sentences("%s/b.toks" % data_folder, vocab, is_train,
"word", test_vocab=test_vocab)
q1_3gram_list, max_q1_3gram_len = read_sentences("%s/a.toks" % data_folder, vocab, is_train,
"3gram", test_vocab=test_vocab)
q2_3gram_list, max_q2_3gram_len = read_sentences("%s/b.toks" % data_folder, vocab, is_train,
"3gram", test_vocab=test_vocab)
url_list, max_url_len_dataset = read_urls("%s/url.txt" % data_folder, vocab, is_train, '3gram')
ids_list = read_metadata("%s/id.txt" % data_folder)
if is_train:
max_query_len['word'] = max(max_query_len['word'], max_q1_word_len)
max_query_len['3gram'] = max(max_query_len['3gram'], max_q1_3gram_len)
max_doc_len['word'] = max(max_doc_len['word'], max_q2_word_len)
max_doc_len['3gram'] = max(max_doc_len['3gram'], min(max_q2_3gram_len, MAX_TWEET_LENGTH))
max_url_len['url'] = max(max_url_len['url'], min(max_url_len_dataset, MAX_URL_LENGTH))
sim_list = read_relevance("%s/sim.txt" % data_folder)
query_word_list.extend(q1_word_list)
doc_word_list.extend(q2_word_list)
query_3gram_list.extend(q1_3gram_list)
doc_3gram_list.extend(q2_3gram_list)
all_url_list.extend(url_list)
all_ids_list.extend(ids_list)
all_sim_list.extend(sim_list)
print("q1 max_word_len: %d, q2 max_word_len: %d, len limit: (%d, %d)" %
(max_q1_word_len, max_q2_word_len, max_query_len['word'], max_doc_len['word']))
print("q1 max_3gram_len: %d, q2 max_3gram_len: %d, len limit: (%d, %d)" %
(max_q1_3gram_len, max_q2_3gram_len, max_query_len['3gram'], max_doc_len['3gram']))
print('max_url_len: %d, limit: %d' % (max_url_len_dataset, max_url_len['url']))
print('load dataset done: %d' % (time.time()-t))
# question padding
data = {'sim': np.array(all_sim_list), 'id': np.array(all_ids_list)}
data['query_word_input'] = pad_sequences(query_word_list, maxlen=max_query_len['word'],
value=PAD_WORD_INDEX, padding='post', truncating='post')
data['query_word_mask'] = create_masks(data['query_word_input'], args)
data['doc_word_input'] = pad_sequences(doc_word_list, maxlen=max_doc_len['word'],
value=PAD_WORD_INDEX, padding='post', truncating='post')
data['doc_word_mask'] = create_masks(data['doc_word_input'], args)
data['query_3gram_input'] = pad_sequences(query_3gram_list, maxlen=max_query_len['3gram'],
value=PAD_WORD_INDEX, padding='post', truncating='post')
data['query_3gram_mask'] = create_masks(data['query_3gram_input'], args)
data['doc_3gram_input'] = pad_sequences(doc_3gram_list, maxlen=max_doc_len['3gram'],
value=PAD_WORD_INDEX, padding='post', truncating='post')
data['doc_3gram_mask'] = create_masks(data['doc_3gram_input'], args)
data['url_3gram_input'] = pad_sequences(all_url_list, maxlen=max_url_len['url'],
value=PAD_WORD_INDEX, padding='post', truncating='pre')
data['url_3gram_mask'] = create_masks(data['url_3gram_input'], args)
if os.path.exists("%s/collection_ngram_idf.json" % path):
t = time.time()
weights = json.load(open("%s/collection_ngram_idf.json" % path, "r"))
vocab_inv = invert_dict(vocab['3gram'])
data['query_3gram_weight'] = inject_ngram_weight(data['query_3gram_input'], vocab_inv, weights)
data['doc_3gram_weight'] = inject_ngram_weight(data['doc_3gram_input'], vocab_inv, weights)
vocab_inv = invert_dict(vocab['url'])
data['url_3gram_weight'] = inject_ngram_weight(data['url_3gram_input'], vocab_inv, weights)
print('ngram weight injection done: %d' % (time.time()-t))
if os.path.exists("%s/collection_word_idf.json" % path):
t = time.time()
weights = json.load(open("%s/collection_word_idf.json" % path, "r"))
merge_vocab = merge_two_dicts(vocab['word'], test_vocab['word'])
vocab_inv = invert_dict(merge_vocab)
data['query_word_weight'] = inject_word_weight(data['query_word_input'], vocab_inv, weights)
data['doc_word_weight'] = inject_word_weight(data['doc_word_input'], vocab_inv, weights)
data['overlap_feat'] = compute_overlap_feat(data['query_word_input'], data['doc_word_input'],
vocab_inv, weights)
print('word weight injection done: %d' % (time.time() - t))
print('data creation is done: %d' % (time.time()-t0))
return data
def sample_val_set(path, train_datasets, val_split=0.1):
sampled_topics = set()
sampled_docs = []
base_idx = 0
for data_name in train_datasets:
train_data = "{}/{}".format(path, data_name)
train_topics = set()
with open(os.path.join(train_data, "id.txt")) as f:
for line in f:
qid, iternum, docno, aid, undefined, run_id = line[:-1].split()
if int(qid) not in train_topics:
train_topics.add(int(qid))
val_topics = random.sample(train_topics, int(val_split*len(train_topics)))
sampled_topics.update(val_topics)
with open(os.path.join(train_data, "id.txt")) as f:
idx = 0
for line in f:
qid, iternum, docno, aid, undefined, run_id = line[:-1].split()
if int(qid) in val_topics:
sampled_docs.append(base_idx + idx)
idx += 1
base_idx += idx
print('sampled val topics: {}'.format(sorted(sampled_topics)))
print("sampled {} samples in total".format(len(sampled_docs)))
return sampled_docs
def construct_vocab_emb(data_path, train_vocab, test_vocab, embed_size, qrepr, base_embed_path):
train_vocab_emb, test_vocab_emb = None, None
if not os.path.exists(data_path):
os.makedirs(data_path)
f = open('%s/OOV_words.txt' % data_path, 'w')
if embed_size == 300 and not qrepr == "char":
print('Load base word embeddings...')
if base_embed_path.endswith("GoogleNews-vectors-negative300.bin.gz"):
entity_model = gensim.models.KeyedVectors.load_word2vec_format(base_embed_path, binary=True,
unicode_errors="ignore")
else:
base_emb_vocab = json.load(open(base_embed_path.replace("_emb", "").replace(".npy", ".json")))
base_emb_matrix = np.load(base_embed_path)
entity_model = (base_emb_vocab, base_emb_matrix)
print("Building embedding matrix from base embedding at %s..." % base_embed_path)
cnt_oov = 0
train_vocab_emb = np.zeros(shape=(len(train_vocab), embed_size))
test_vocab_emb = np.zeros(shape=(len(test_vocab), embed_size))
print("train vocab size: %d, test vocab size: %d" % (len(train_vocab), len(test_vocab)))
for word in train_vocab:
wid = train_vocab[word]
# padded words embedded to vector with all zeros
if wid != PAD_WORD_INDEX:
emb = get_word_vector(entity_model, word)
if emb is None:
cnt_oov += 1
emb = np.random.rand(embed_size).astype(np.float32)
emb = emb * 0.1
f.write(word+'\n')
train_vocab_emb[wid] = emb
for word in test_vocab:
wid = test_vocab[word] - len(train_vocab)
emb = get_word_vector(entity_model, word)
if emb is None:
cnt_oov += 1
emb = np.random.rand(embed_size).astype(np.float32)
emb = emb * 0.1
f.write(word+'\n')
#print(word, test_vocab[word], wid)
test_vocab_emb[wid] = emb
print('OOV words: %d' % cnt_oov)
f.close()
return train_vocab_emb, test_vocab_emb
def load_data(folder, is_train):
data = {}
for fname in glob.glob("%s/*data.npy" % folder):
key = fname.split("/")[-1].split(".")[-3]
data[key] = np.load(fname)
max_query_len, max_doc_len, max_url_len = None, None, None
vocab = json.load(open("%s/vocab.json" % folder, "r"))
vocab_emb = np.load("%s/vocab_emb.npy" % folder)
if is_train:
max_query_len = json.load(open("%s/max_query_len.json" % folder, "r"))
max_doc_len = json.load(open("%s/max_doc_len.json" % folder, "r"))
max_url_len = json.load(open("%s/max_url_len.json" % folder, "r"))
return data, vocab, vocab_emb, max_query_len, max_doc_len, max_url_len,
def save_data(folder, is_train, data, max_query_len=None, max_doc_len=None, max_url_len=None,
vocab=None, vocab_emb=None):
if not os.path.exists(folder):
os.makedirs(folder)
for key, value in data.items():
np.save("%s/%s.data.npy" % (folder, key), value)
json.dump(vocab, open("%s/vocab.json" % folder, "w"), indent=4)
np.save("%s/vocab_emb" % folder, vocab_emb)
if is_train:
json.dump(max_query_len, open("%s/max_query_len.json" % folder, "w"))
json.dump(max_doc_len, open("%s/max_doc_len.json" % folder, "w"))
json.dump(max_url_len, open("%s/max_url_len.json" % folder, "w"))