-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path063 Unique Paths II.py
49 lines (42 loc) · 1.3 KB
/
063 Unique Paths II.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
'''
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[
[0,0,0],
[0,1,0],
[0,0,0]
]
The total number of unique paths is 2.
'''
class Solution(object):
def uniquePathsWithObstacles(self, obstacleGrid):
"""
:type obstacleGrid: List[List[int]]
:rtype: int
"""
if obstacleGrid[0][0] == 1:
return 0
m = len(obstacleGrid)
n = len(obstacleGrid[0])
dp = [[0 for __ in range(n)] for __ in range(m)]
dp[0][0] = 1
for i in range(1, m):
dp[i][0] = dp[i - 1][0] if obstacleGrid[i][0] == 0 else 0
for j in range(1, n):
dp[0][j] = dp[0][j - 1] if obstacleGrid[0][j] == 0 else 0
for i in range(1, m):
for j in range(1, n):
if obstacleGrid[i][j] == 1:
dp[i][j] = 0
else:
dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
return dp[m - 1][n - 1]
if __name__ == "__main__":
assert Solution().uniquePathsWithObstacles([
[0, 0, 0],
[0, 1, 0],
[0, 0, 0]
]) == 2