-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path051 N-Queens.py
51 lines (40 loc) · 1.46 KB
/
051 N-Queens.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
'''
The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.
Given an integer n, return all distinct solutions to the n-queens puzzle.
Each solution contains a distinct board configuration of the n-queens' placement, where 'Q' and '.' both indicate a queen and an empty space respectively.
For example,
There exist two distinct solutions to the 4-queens puzzle:
[
[".Q..", // Solution 1
"...Q",
"Q...",
"..Q."],
["..Q.", // Solution 2
"Q...",
"...Q",
".Q.."]
]
'''
class Solution(object):
def solveNQueens(self, n):
"""
:type n: int
:rtype: List[List[str]]
"""
self.col = [False] * n
self.diag = [False] * (2 * n)
self.anti_diag = [False] * (2 * n)
self.result = []
self.recursive(0, n, [])
return self.result
def recursive(self, row, n, column):
if row == n:
self.result.append(list(map(lambda x: '.' * x + 'Q' + '.' * (n - 1 - x), column)))
else:
for i in range(n):
if not self.col[i] and not self.diag[row + i] and not self.anti_diag[n - i + row]:
self.col[i] = self.diag[row + i] = self.anti_diag[n - i + row] = True
self.recursive(row + 1, n, column + [i])
self.col[i] = self.diag[row + i] = self.anti_diag[n - i + row] = False
if __name__ == "__main__":
print(Solution().solveNQueens(5))