Skip to content

Latest commit

 

History

History
193 lines (147 loc) · 5.88 KB

README.md

File metadata and controls

193 lines (147 loc) · 5.88 KB

Queryshield Implementation

Table of Contents

Description

The repo is the frontend interface of Queryshield, a secure multiparty computation (MPC) cloud service. It leverages the power of cryptographic techniques to enable collaborative computation among multiple parties without compromising the privacy of their data.

Tech Stack

  • Frontend: Streamlit, Python
  • Database: PostgreSQL
  • Authentication: JWT library

Functionalities

  • User Registration & Authentication
    • Securely manage user registration and authentication with JWT-based token handling for enhanced security and session management.
  • Analyst Features
    • Create Analysis Page: allows analysts to create new analyses with custom schemas, thread modes, and SQL queries.
    • Analysis History Page: allow analyst to trace his/her analysis status.
  • Data Owner Features
    • Analysis Catalog Page: allows data owners to view all available analyses, providing an entry point for data sharing.
    • Share Data Page: allow data owner to do secret data sharing using MPC.
  • Analysis Detail Page: wiew detailed metadata about specific analyses.

Get Started

1) Configure environment variables

  1. Create .env at the root:

    touch .env
  2. Edit .env file with these variables:

    JWT_SECRET_KEY=secret
    DATABASE_URL=postgresql+psycopg2://user1:12345678!@host.docker.internal:5432/storage
    DATABASE_URL_VERIFICATION=postgresql+psycopg2://user1:12345678!@host.docker.internal:5432/verification
    POSTGRES_USER=user1
    POSTGRES_PASSWORD=12345678!
    POSTGRES_DB=storage
    POSTGRES_DB_VERIFICATION=verification

2-1) Deploy on Docker

The following instruction is for running the app on Docker, if you want to deploy on your local machine, you can go to 2-2) Deploy on Local

  1. Start Docker.

  2. Open a terminal and navigate to the scripts folder":

    cd scripts
  3. Run the following commands:

    chmod +x start.sh
    ./start.sh

2-2) Deploy on local

You can also run the app on your local machine, rather than using Docker. The following is the instruction.

  1. Create and activate a Python virtual environment:

    python -m venv venv
    source venv/bin/activate
  2. Install all dependencies

    pip install -r requirements.txt
  3. Compile the custom streamlit React component

    cd src/secret_share_component
    npm install
    npm run build
  4. Run python ./src/Create_Analysis.py

    cd ../..
    python ./src/Create_Analysis.py

File Structure

.
├── Dockerfile                   # Docker configuration file
├── LICENSE                      # License information
├── README.md                    # Project documentation
├── docker-compose.yml           # Docker Compose configuration
├── requirements.txt             # Python dependencies
├── setup.py                     # Python app setup file
├── scripts                      # Shell scripts
│   ├── cleanup.sh               # Script to remove the entire app from Docker
│   └── start.sh                 # Script to start/restart the app
├── sql                          # SQL scripts
│   ├── db_setup.sql             # Database setup script
│   └── db_storage_setup.sql     # Database storage setup script
├── secret_share_component/      # React.ts secret data sharing component
└── src                          # Source code
    ├── Create_Analysis.py       # Main app (entry point)
    ├── components/              # UI components
    ├── configs/                 # Configuration files
    ├── db/                      # Database connection and operations
    ├── models/                  # Data models
    ├── pages/                   # Application pages
    └── utils/                   # Utility functions

Database Schema

User

user_role Enum

  • analyst
  • data_owner

user table

Column Name Column Type
uid SERIAL ->PK
first_name VARCHAR(50)
last_name VARCHAR(50)
email VARCHAR(50)
pin VARCHAR(50)
role user_role

Analysis

analysis_status Enum

  • Created
  • Ready
  • Running
  • Failed
  • Completed

analysis table

Column Name Column Type
aid SERIAL ->PK
analysis_name TEXT NOT NULL
analyst_id INTEGER REFERENCES user(uid)
time_created datetime DEFAULT NOW()
details JSONB NOT NULL
owners_registered SERIAL[]
status analysis_status NOT NULL

analysis_owners table

Column Name Column Type
analysis_id INTEGER REFERENCES analysis(user_id)
user_id INTEGER REFERENCES user(aid)