-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_ycb.py
executable file
·241 lines (211 loc) · 9.19 KB
/
eval_ycb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import _init_paths
import argparse
import os
import copy
import random
import numpy as np
from PIL import Image
import scipy.io as scio
import scipy.misc
import numpy.ma as ma
import math
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torchvision.utils as vutils
import torch.nn.functional as F
from torch.autograd import Variable
from datasets.ycb.dataset import PoseDataset
from lib.network import PoseNet, PoseRefineNet
from lib.transformations import euler_matrix, quaternion_matrix, quaternion_from_matrix
parser = argparse.ArgumentParser()
parser.add_argument('--dataset_root', type=str, default = '', help='dataset root dir')
parser.add_argument('--model', type=str, default = '', help='resume PoseNet model')
parser.add_argument('--refine_model', type=str, default = '', help='resume PoseRefineNet model')
opt = parser.parse_args()
norm = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
border_list = [-1, 40, 80, 120, 160, 200, 240, 280, 320, 360, 400, 440, 480, 520, 560, 600, 640, 680]
xmap = np.array([[j for i in range(640)] for j in range(480)])
ymap = np.array([[i for i in range(640)] for j in range(480)])
cam_cx = 312.9869
cam_cy = 241.3109
cam_fx = 1066.778
cam_fy = 1067.487
cam_scale = 10000.0
num_obj = 21
img_width = 480
img_length = 640
num_points = 1000
num_points_mesh = 500
iteration = 2
bs = 1
dataset_config_dir = 'datasets/ycb/dataset_config'
ycb_toolbox_dir = 'YCB_Video_toolbox'
result_wo_refine_dir = 'experiments/eval_result/ycb/Densefusion_wo_refine_result'
result_refine_dir = 'experiments/eval_result/ycb/Densefusion_iterative_result'
def get_bbox(posecnn_rois):
rmin = int(posecnn_rois[idx][3]) + 1
rmax = int(posecnn_rois[idx][5]) - 1
cmin = int(posecnn_rois[idx][2]) + 1
cmax = int(posecnn_rois[idx][4]) - 1
r_b = rmax - rmin
for tt in range(len(border_list)):
if r_b > border_list[tt] and r_b < border_list[tt + 1]:
r_b = border_list[tt + 1]
break
c_b = cmax - cmin
for tt in range(len(border_list)):
if c_b > border_list[tt] and c_b < border_list[tt + 1]:
c_b = border_list[tt + 1]
break
center = [int((rmin + rmax) / 2), int((cmin + cmax) / 2)]
rmin = center[0] - int(r_b / 2)
rmax = center[0] + int(r_b / 2)
cmin = center[1] - int(c_b / 2)
cmax = center[1] + int(c_b / 2)
if rmin < 0:
delt = -rmin
rmin = 0
rmax += delt
if cmin < 0:
delt = -cmin
cmin = 0
cmax += delt
if rmax > img_width:
delt = rmax - img_width
rmax = img_width
rmin -= delt
if cmax > img_length:
delt = cmax - img_length
cmax = img_length
cmin -= delt
return rmin, rmax, cmin, cmax
estimator = PoseNet(num_points = num_points, num_obj = num_obj)
estimator.cuda()
estimator.load_state_dict(torch.load(opt.model))
estimator.eval()
refiner = PoseRefineNet(num_points = num_points, num_obj = num_obj)
refiner.cuda()
refiner.load_state_dict(torch.load(opt.refine_model))
refiner.eval()
testlist = []
input_file = open('{0}/test_data_list.txt'.format(dataset_config_dir))
while 1:
input_line = input_file.readline()
if not input_line:
break
if input_line[-1:] == '\n':
input_line = input_line[:-1]
testlist.append(input_line)
input_file.close()
print(len(testlist))
class_file = open('{0}/classes.txt'.format(dataset_config_dir))
class_id = 1
cld = {}
while 1:
class_input = class_file.readline()
if not class_input:
break
class_input = class_input[:-1]
input_file = open('{0}/models/{1}/points.xyz'.format(opt.dataset_root, class_input))
cld[class_id] = []
while 1:
input_line = input_file.readline()
if not input_line:
break
input_line = input_line[:-1]
input_line = input_line.split(' ')
cld[class_id].append([float(input_line[0]), float(input_line[1]), float(input_line[2])])
input_file.close()
cld[class_id] = np.array(cld[class_id])
class_id += 1
for now in range(0, 2949):
img = Image.open('{0}/{1}-color.png'.format(opt.dataset_root, testlist[now]))
depth = np.array(Image.open('{0}/{1}-depth.png'.format(opt.dataset_root, testlist[now])))
posecnn_meta = scio.loadmat('{0}/results_PoseCNN_RSS2018/{1}.mat'.format(ycb_toolbox_dir, '%06d' % now))
label = np.array(posecnn_meta['labels'])
posecnn_rois = np.array(posecnn_meta['rois'])
lst = posecnn_rois[:, 1:2].flatten()
my_result_wo_refine = []
my_result = []
for idx in range(len(lst)):
itemid = lst[idx]
try:
rmin, rmax, cmin, cmax = get_bbox(posecnn_rois)
mask_depth = ma.getmaskarray(ma.masked_not_equal(depth, 0))
mask_label = ma.getmaskarray(ma.masked_equal(label, itemid))
mask = mask_label * mask_depth
choose = mask[rmin:rmax, cmin:cmax].flatten().nonzero()[0]
if len(choose) > num_points:
c_mask = np.zeros(len(choose), dtype=int)
c_mask[:num_points] = 1
np.random.shuffle(c_mask)
choose = choose[c_mask.nonzero()]
else:
choose = np.pad(choose, (0, num_points - len(choose)), 'wrap')
depth_masked = depth[rmin:rmax, cmin:cmax].flatten()[choose][:, np.newaxis].astype(np.float32)
xmap_masked = xmap[rmin:rmax, cmin:cmax].flatten()[choose][:, np.newaxis].astype(np.float32)
ymap_masked = ymap[rmin:rmax, cmin:cmax].flatten()[choose][:, np.newaxis].astype(np.float32)
choose = np.array([choose])
pt2 = depth_masked / cam_scale
pt0 = (ymap_masked - cam_cx) * pt2 / cam_fx
pt1 = (xmap_masked - cam_cy) * pt2 / cam_fy
cloud = np.concatenate((pt0, pt1, pt2), axis=1)
img_masked = np.array(img)[:, :, :3]
img_masked = np.transpose(img_masked, (2, 0, 1))
img_masked = img_masked[:, rmin:rmax, cmin:cmax]
cloud = torch.from_numpy(cloud.astype(np.float32))
choose = torch.LongTensor(choose.astype(np.int32))
img_masked = norm(torch.from_numpy(img_masked.astype(np.float32)))
index = torch.LongTensor([itemid - 1])
cloud = Variable(cloud).cuda()
choose = Variable(choose).cuda()
img_masked = Variable(img_masked).cuda()
index = Variable(index).cuda()
cloud = cloud.view(1, num_points, 3)
img_masked = img_masked.view(1, 3, img_masked.size()[1], img_masked.size()[2])
pred_r, pred_t, pred_c, emb = estimator(img_masked, cloud, choose, index)
pred_r = pred_r / torch.norm(pred_r, dim=2).view(1, num_points, 1)
pred_c = pred_c.view(bs, num_points)
how_max, which_max = torch.max(pred_c, 1)
pred_t = pred_t.view(bs * num_points, 1, 3)
points = cloud.view(bs * num_points, 1, 3)
my_r = pred_r[0][which_max[0]].view(-1).cpu().data.numpy()
my_t = (points + pred_t)[which_max[0]].view(-1).cpu().data.numpy()
my_pred = np.append(my_r, my_t)
my_result_wo_refine.append(my_pred.tolist())
for ite in range(0, iteration):
T = Variable(torch.from_numpy(my_t.astype(np.float32))).cuda().view(1, 3).repeat(num_points, 1).contiguous().view(1, num_points, 3)
my_mat = quaternion_matrix(my_r)
R = Variable(torch.from_numpy(my_mat[:3, :3].astype(np.float32))).cuda().view(1, 3, 3)
my_mat[0:3, 3] = my_t
new_cloud = torch.bmm((cloud - T), R).contiguous()
pred_r, pred_t = refiner(new_cloud, emb, index)
pred_r = pred_r.view(1, 1, -1)
pred_r = pred_r / (torch.norm(pred_r, dim=2).view(1, 1, 1))
my_r_2 = pred_r.view(-1).cpu().data.numpy()
my_t_2 = pred_t.view(-1).cpu().data.numpy()
my_mat_2 = quaternion_matrix(my_r_2)
my_mat_2[0:3, 3] = my_t_2
my_mat_final = np.dot(my_mat, my_mat_2)
my_r_final = copy.deepcopy(my_mat_final)
my_r_final[0:3, 3] = 0
my_r_final = quaternion_from_matrix(my_r_final, True)
my_t_final = np.array([my_mat_final[0][3], my_mat_final[1][3], my_mat_final[2][3]])
my_pred = np.append(my_r_final, my_t_final)
my_r = my_r_final
my_t = my_t_final
# Here 'my_pred' is the final pose estimation result after refinement ('my_r': quaternion, 'my_t': translation)
my_result.append(my_pred.tolist())
except ZeroDivisionError:
print("PoseCNN Detector Lost {0} at No.{1} keyframe".format(itemid, now))
my_result_wo_refine.append([0.0 for i in range(7)])
my_result.append([0.0 for i in range(7)])
scio.savemat('{0}/{1}.mat'.format(result_wo_refine_dir, '%04d' % now), {'poses':my_result_wo_refine})
scio.savemat('{0}/{1}.mat'.format(result_refine_dir, '%04d' % now), {'poses':my_result})
print("Finish No.{0} keyframe".format(now))