The Amanatsu and Jabara pipeline implementations do not actually model pipelines. Rather, they merely execute instructions as rapidly as possible. In addition to making them almost 100s of times faster than any of the other sample pipelines (all of which, do model execution in cycle-accurate detail), this makes Amanatsu and Jabara ideally suited for capturing execution state in a snapshot that can be resumed.
To capture snapshots at exactly 100, 300, 900, and 2,700 instructions' worth of execution:
cd ${HOME}/src/nebula/pipelines/amanatsu/
mkdir -p /tmp/amanatsu/sum
python3 ../../launcher.py \
--log /tmp/amanatsu/sum \
--service ../../toolbox/stats.py:localhost:-1:-1 \
--config stats:output_filename:/tmp/amanatsu/sum/stats.json \
mainmem:filename:/tmp/amanatsu/sum/mainmem.raw \
mainmem:capacity:$(( 2**32 )) \
--snapshots 100 300 900 2700 \
-- \
12345 \
localhost.nebula \
../../examples/bin/sum 2 3 5 7 11 13 17 19 23 29
This will create a series of files:
- /tmp/amanatsu/sum/mainmem.raw.000000000000100.snapshot: execution state captured after 100 instructions
- /tmp/amanatsu/sum/mainmem.raw.000000000000300.snapshot: execution state captured after 300 instructions
- /tmp/amanatsu/sum/mainmem.raw.000000000000900.snapshot: execution state captured after 900 instructions
- /tmp/amanatsu/sum/mainmem.raw.000000000002700.snapshot: execution state captured after 2,700 instructions
Jabara is almost 3 times faster than Amanatsu, but, because Jabara executes entire basic blocks, it cannot guarantee that snapshots will be taken at exactly the specified snapshot locations; consider:
cd ${HOME}/src/nebula/pipelines/jabara/
mkdir -p /tmp/jabara/sum
python3 ../../launcher.py \
--log /tmp/jabara/sum \
--service ../../toolbox/stats.py:localhost:22:-1:-1 \
--config stats:output_filename:/tmp/jabara/sum/stats.json \
mainmem:filename:/tmp/jabara/sum/mainmem.raw \
mainmem:capacity:$(( 2**32 )) \
--snapshots 100 300 900 2700 \
-- \
12345 \
localhost.nebula \
../../examples/bin/sum 2 3 5 7 11 13 17 19 23 29
creates the files:
- /tmp/jabara/sum/mainmem.raw.000000000000101.snapshot: execution state captured at 101 instructions
- /tmp/jabara/sum/mainmem.raw.000000000000301.snapshot: execution state captured at 301 instructions
- /tmp/jabara/sum/mainmem.raw.000000000000901.snapshot: execution state captured at 901 instructions
- /tmp/jabara/sum/mainmem.raw.000000000002702.snapshot: execution state captured at 2,702 instructions
Notice that the snapshot instruction counts... 101, 301, 901, and 2702... are not exactly equal to 100, 300, 900, and 2700. This is a very modest tradeoff for the significant performance gain; but if snapshots must be exact, use Amanatsu instead.
Any of the pipelines can restore state from a snapshot and resume execution, e.g.:
cd ${HOME}/src/nebula/pipelines/pompia/
python3 ../../launcher.py \
--log /tmp/pompia/sum \
--service ../../toolbox/stats.py:localhost:-1:-1 \
--config stats:output_filename:/tmp/pompia/sum/stats.json \
mainmem:filename:/tmp/pompia/sum/mainmem.raw \
mainmem:capacity:$(( 2**32 )) \
--restore /tmp/amanatsu/sum/mainmem.raw.000000000000900.snapshot \
-- \
12345 \
localhost.nebula
and
cd ${HOME}/src/nebula/pipelines/shangjuan/
python3 ../../launcher.py \
--log /tmp/shangjuan/sum \
--service ../../toolbox/stats.py:localhost:22:-1:-1 \
--config stats:output_filename:/tmp/shangjuan/sum/stats.json \
mainmem:filename:/tmp/shangjuan/sum/mainmem.raw \
mainmem:capacity:$(( 2**32 )) \
--restore /tmp/jabara/sum/mainmem.raw.000000000000901.snapshot \
-- \
12345 \
localhost.nebula
Note: (1) the --restore
parameter is included; and (2) the command that
was executed to create the snapshots (../../examples/bin/sum 2 3 5 7 11 13 17 19 23 29
...) is
omitted. In these examples, the Pompia and
Shangjuan pipelines should both return
129