-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathirysy.py
129 lines (96 loc) · 3.95 KB
/
irysy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
trainFilePath = 'assets/data_train.csv'
testFilePath = 'assets/data_test.csv'
import csv
import math
import operator
from collections import Counter
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from pandas.plotting import table
def main():
trainData = list(csv.reader(open(trainFilePath), quoting=csv.QUOTE_NONNUMERIC))
testData = list(csv.reader(open(testFilePath), quoting=csv.QUOTE_NONNUMERIC))
kValues = [1, 3, 5, 7, 9, 11]
handleCase(trainData, testData, kValues, [0,1,2,3])
handleCase(trainData, testData, kValues, [0,1,2])
handleCase(trainData, testData, kValues, [1,2,3])
handleCase(trainData, testData, kValues, [0,1])
handleCase(trainData, testData, kValues, [1,3])
def handleCase(trainData, testData, kValues, properties):
errors = processAndReturnErrors(trainData, testData, kValues, properties)
accuracy = []
testDataCount = len(testData)
for e in errors:
accuracy.append(getAccuracy(len(e), testDataCount))
worst = accuracy.index(min(accuracy))
counts = Counter(list(map(lambda d: int(d[4]), testData)))
propStr = str(list(map(lambda p: p + 1, properties)))
plotBarChart(kValues, accuracy, propStr)
plotConfusionMatrix(errors[worst], counts, propStr)
def plotBarChart(x, y, propStr):
indX = np.arange(len(x))
fig, ax = plt.subplots()
rects1 = ax.bar(indX, y, 0.35, color='SkyBlue')
ax.set_title('Wykres dla zestawu cech ' + propStr)
ax.set_xlabel('k')
ax.set_xticks(indX)
ax.set_xticklabels(x)
ax.set_ylabel('Dokładność (%)')
ax.set_ylim([min(y) - 1, max(y) + 1])
ax.yaxis.grid(True)
plt.savefig('charts/barchart' + propStr + '.png')
def getAccuracy(errors, count):
return round((count - errors) / count * 100, 0)
def getConfusionMatrix(errors, counts):
confusionMatrix = [[0,0,0],[0,0,0],[0,0,0]]
for e in errors:
confusionMatrix[int(e[0])][int(e[1])] += 1
for i,real in enumerate(confusionMatrix):
for j,calculated in enumerate(real):
confusionMatrix[i][j] = round(calculated / counts[i] * 100, 0)
confusionMatrix[i][i] = 100
for j,calculated in enumerate(real):
if j != i:
confusionMatrix[i][i] -= calculated
return confusionMatrix
def plotConfusionMatrix(errors, counts, propStr):
species = ['setosa', 'versicolor', 'virginica']
title = 'Macierz pomyłek dla zestawu cech ' + propStr
matrix = list(map(
lambda row: list(map(lambda el: str(int(el)) + '%', row)), getConfusionMatrix(errors, counts)))
# [real value][predicted value]
df = pd.DataFrame(matrix)
df.rename(
index = lambda i: species[i],
columns = lambda i: species[i],
inplace=True
)
print('\n----------------------------------------\n' + title + '\n')
print(df)
def processAndReturnErrors(trainData, testData, kValues, properties):
errors = []
for k in kValues:
currentErrors = []
for testCase in testData:
neighbours = []
for trainCase in trainData:
distance = 0
for p in properties:
distance += (testCase[p] - trainCase[p])**2
distance = math.sqrt(distance)
if len(neighbours) < k:
neighbours.append([distance, trainCase[4]])
else:
neighbours = sorted(neighbours, key=operator.itemgetter(0))
if distance < neighbours[k-1][0]:
neighbours[k-1] = [distance, trainCase[4]]
neighboursSpecies = list(map(lambda n: n[1], neighbours))
occurence_count = Counter(neighboursSpecies)
species = occurence_count.most_common(1)[0][0]
if testCase[4] != species :
currentErrors.append([testCase[4], species])
errors.append(currentErrors)
return errors
if __name__ == "__main__":
main()