-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathplot.py
84 lines (74 loc) · 2.97 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
import numpy as np
import csv
def transparent_cmap(cmap, N=255):
mycmap = cmap
mycmap._init()
mycmap._lut[:,-1] = np.linspace(0, 0.8, N+4)
return mycmap
mycmap = transparent_cmap(plt.cm.Blues)
if __name__ == "__main__":
## plot charts
with open('out.csv', 'rb') as csvfile:
datareader = csv.reader(csvfile, delimiter=',')
data = [line for line in datareader]
try:
idx, loss, reward_loss, transition_loss, _, empirical_value_diff, theoretical_value_diff = zip(*data[:-1])
idx = [float(x) for x in idx]
loss = [float(x) for x in loss]
reward_loss = [float(x) for x in reward_loss]
transition_loss = [float(x) for x in transition_loss]
empirical_value_diff = [float(x) for x in empirical_value_diff]
theoretical_value_diff = [float(x) for x in theoretical_value_diff]
plt.plot(idx, loss, label='loss')
plt.plot(idx, empirical_value_diff, label='Empirical Value Diff')
plt.plot(idx, theoretical_value_diff, label='Theoretical Value Diff')
plt.legend()
plt.savefig("match_theory.png")
plt.close()
plt.plot(idx, reward_loss, label='Reward Loss')
plt.plot(idx, transition_loss, label='Transition Loss')
plt.legend()
plt.savefig("optimization.png")
plt.close()
except ValueError:
print "plotting heatmaps only..."
## plot heatmaps
pairs = []
for source_i in [i+j for i in [70, 300, 325, 525] for j in [0,602,602*2,602*3]]:
try:
# plot env
with open("env%d.csv" % source_i) as f:
datareader = csv.reader(f, delimiter=',')
data = [line for line in datareader]
size = 64 if max([int(d[0]) for d in data]) > 32 else 32
env = np.zeros([size,size])
for i, j, h in data:
env[int(i),int(j)] = float(h)
plt.xlim(1, size-1)
plt.ylim(1, size-1)
plt.xticks([])
plt.yticks([])
plt.imshow(env, cmap='gray')
plt.imshow((env == 0).astype(np.float), cmap=mycmap)
plt.savefig("env%d.png" % source_i)
plt.close()
# plot heatmap
with open("heatmap%d.csv" % source_i) as f:
datareader = csv.reader(f, delimiter=',')
data = [line for line in datareader]
size = 64 if max([int(d[0]) for d in data]) > 32 else 32
heatmap = np.zeros([size,size])
for i, j, h in data:
heatmap[int(i), int(j)] = float(h)
plt.xlim(1,size-1)
plt.ylim(1,size-1)
plt.xticks([])
plt.yticks([])
plt.imshow(heatmap, cmap='hot', interpolation='nearest')
plt.imshow((env == 0).astype(np.float), cmap=mycmap)
plt.savefig("heatmap%d.png" % source_i)
plt.close()
except IOError:
pass