-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgaussian.py
287 lines (237 loc) · 8.68 KB
/
gaussian.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
from numpy import random as rand
from numpy import *
import matplotlib.pyplot as plt
from pylab import figure, matshow, show, imshow
try:
from sage.all import *
except:
pass
def gaussian(height, center_x, center_y, width_x, width_y):
"""Returns a gaussian function with the given parameters"""
width_x = float(width_x)
width_y = float(width_y)
return lambda x,y: height*exp(
-(((center_x-x)/width_x)**2+((center_y-y)/width_y)**2)/2)
def dist( x1, x2, y1, y2 ):
return (x1-x2)**2 + (y1-y2)**2
def noisy_gaussian(height, center_x, center_y, width_x, width_y, noise_level, shape):
"""Returns a gaussian function with the given parameters"""
rand.seed( seed )
width_x = float(width_x)
width_y = float(width_y)
return lambda x,y: height*exp(
-(((center_x-x)/width_x)**2 + ((center_y-y)/width_y)**2)/2) +\
noise_level*rand.normal( size=shape )
def plot_gaussian( size_x=201, size_y=201, height=100, width=20,
noise_level=None, bowl=False,
fname=None, show_fig=False ):
"""
Gaussian centered at (100,100). Equal width in each direction.
"""
nx = ny = 200
Xin, Yin = mgrid[0:size_x, 0:size_y]
if not noise_level:
data = gaussian(height, nx, ny, width, width)(Xin, Yin)
if bowl:
gb = gaussian( 0.8*height, nx, ny, 0.6*width, 0.6*width )(Xin, Yin)
data = data - gb
else:
data = noisy_gaussian(height, nx, ny, width, width, noise_level, shape=Xin.shape)(Xin, Yin)
# crop the data
# zd = zeros_like( data )
# for i in range( data.shape[0] ):
# for j in range( data.shape[1] ):
# if dist( 100, i, 100, j ) < 10*width**2:
# zd[i,j] = 1
# data = zd * data
# convert data into integers, just stretch stuff out
data = 10000 * data
data = array( data, dtype=int )
# if noise_level:
# save( "./data/gauss_bump_noise"+str(noise_level)+"_"+str(height), data )
# else:
# if bowl:
# save( "./data/gauss_bowl_"+str(size_x), data )
# else:
# save( "./data/gauss_bump_"+str(size_y), data )
if show_fig:
fig = figure()
ax = fig.gca()
ax.matshow( data )
return data, fig
if fname:
fig.savefig( "./figures/"+fname )
return data, fig
else:
return data
def sublevel( data, height ):
"""
Plot sublevel sets. Specify colors so that background is white or transparent.
"""
h = height
nx, ny = data.shape
G = zeros( (nx,ny,3), dtype=int )
#outdir = slash.join( fname.split( '/' )[:-1] ) + '/'
G[ where( data > int(h) ) ] = [1,1,1]
G[ where( data <= int(h) ) ] = [0,0,160]
G[ where( data == 0 ) ] = [1,1,1]
# outName = fname.split('/')[-1][:-4] + '_' + str( h )
# output = outdir + outName
# now plot stuff
fig = plt.figure( figsize=(8,8), frameon=False )
ax = fig.gca()
ax.set_title( 'sublevel ' + str( h ) )
ax.imshow( G )
ax.set_xticks( [] )
ax.set_yticks( [] )
fig.show()
return fig, G
def multi_gaussian():
"""
Just a utility function. Requires Sage.
Sage 3d commands:
sage: import gaussian as gs
sage: G = gs.multi_gaussian()
sage: cmsel = [colormaps['jet'](i) for i in sxrange(0,1, 0.005)]
sage: q = plot3d( lambda x,y: G[x,y], (x,0,200), (y,0,200), adaptive=True, color=cmsel)
sage: q.show( spect_ratio=(1,1,1), figsize=[7,3], frame=False )
"""
nx = ny = 801
fat = plot_gaussian( nx, ny, 1.5, width=40)
flip = plot_gaussian( nx, ny, -1.3, width=20)
tall = plot_gaussian( nx, ny, 1, width=7)
G = fat + flip + tall
return G
def plot_gauss_trough( level=7430 ):
"""
For use with sage.
"""
G = multi_gaussian()
#G = G / 4.
nx,ny = G.shape
var( 'x,y' )
cmsel = [colormaps['jet'](i) for i in sxrange(0,1, 0.005)]
# Q = plot3d( lambda x,y: G[x,y], (x,0,nx-1), (y,0,ny-1), adaptive=True, color=cmsel)
# # Q.show( spect_ratio=(1,1,1), figsize=[7,3], frame=False )
# P = plot3d( lambda x,y: level, (x,0,nx-1), (y,0,ny-1), adaptive=True, color='blue', alpha=0.5)
# (P+Q) . show( spect_ratio=(1,1,1), figsize=[7,3], frame=True )
Q = plot3d( lambda x,y: G[x,y], (x,100,300), (y,100,300), adaptive=True, color=cmsel)
P = plot3d( lambda x,y: level, (x,100,300), (y,100,300), adaptive=True, color='blue', alpha=0.5)
(P+Q) . show( spect_ratio=(1,1,1), figsize=[7,3], frame=True )
C = clip_sublevel( G, level )
R = plot3d( lambda x,y: C[x,y], (x,0,nx-1), (y,0,ny-1), adaptive=True, color='blue', alpha=0.5)
R.show( aspect_ratio=(1,1,1), figsize=[7,3], frame=True )
return G
def clip_sublevel( G, level ):
"""
Set all values above 'level' to 'level.
"""
C = G.copy()
idx = where( G > level )
C[ idx ] = level
return C
def clip_below( G, lb ):
"""
Replace all values in G < lb with 0.
"""
w = where( G < lb )
G[ w ] = 0
#return G
#return G[ w ] = 0
def gauss_bump( size_x=400, size_y=400, shift_x=70, shift_y=-70, noise=None, seed=1234 ):
"""
Plot a gaussian with a small subpeak and a single pixel ("noise") raised.
Argument <noise> takes a float for the amplitude of the additive gaussian noise (mean 0).
"""
nx = ny = 201
Xin, Yin = mgrid[0:size_x, 0:size_y]
# the big bump
big_h = 20
big_w = 40
if not noise:
big = gaussian(big_h, nx, ny, big_w, big_w)(Xin, Yin)
else:
big = noisy_gaussian(big_h, nx, ny, big_w, big_w,
noise, shape=Xin.shape, seed=seed )(Xin, Yin)
# the subpeak
small_h = 11
small_w = 20
snx = nx + shift_x
sny = ny + shift_y
small = gaussian(small_h, snx, sny, small_w, small_w)(Xin, Yin)
# add pixelated noise at a single point near the peak of 'big'
#if not noise:
big[ nx-15, ny+8 ] += 1.0
big[ nx-15, ny+9 ] += 1.0
big[ nx-16, ny+8 ] += 1.0
big[ nx-16, ny+9 ] += 1.0
# big[ nx-14, ny+8 ] += 1.0
# big[ nx-14, ny+9 ] += 1.0
# big[ nx-16, ny+8 ] += 1.0
# big[ nx-16, ny+9 ] += 1.0
return big + small
######
## convenience functions
######
def create_persfile( noise=None,
smooth_data='/Users/jberwald/github/local/caja-matematica/pyRBC/data/gauss_peak/gauss_peak.npy' ):
"""
Convenience function. Sample usage:
import gaussian as G
noise = linspace( 0.01, 0.1, 10 )
for x in noise:
G.create_persfile( noise=x )
Saves the perseus-readable (sparse cubical format) to disk (see
below).
"""
from pyRBC import rbc_npy2Perseus as rp
# grab the original file
A = gauss_bump( noise=noise )
# find where to clip the noisy surface
B = load( smooth_data )
clip_below( B, 1 ) # in-place, set elements to zero
w = where( B == 0 )
A[w] = 0 # now both smooth on noisy surfaces are clipped to zero
# outside the same boundary.
# scale for additional resolution
A *= 100
# might as well save the file for posterity
noise_level = str( noise )
# remove the decimal (split on '.', then join the list with '.' removed)
noise_level = ''.join( noise_level.split( '.' ) )
sname = './data/gauss_peak/Gnoise/gauss_Gnoise'+noise_level
# clip the zeros to force a white background in figures
print "Saving ", sname
save( sname+'.npy', A )
rp.write_sparse_file( sname+'.npy',
sname+'_pers' )
def run_perseus( ):
"""
Convenience function
"""
from pyRBC import rbc_perseus as pers
levels = linspace(0.01,0.1,10)
persname = '/Users/jberwald/github/local/caja-matematica/pyRBC/data/gauss_peak/Gnoise/gauss_Gnoise'
for x in levels:
noise_level = str( x )
# remove the decimal (split on '.', then join the list with '.' removed)
noise_level = ''.join( noise_level.split( '.' ) )
fname = persname + noise_level + '_pers.txt'
outname = persname + noise_level
print fname
print outname
print ""
pers.perseus( fname, outname )
def make_figures():
"""
"""
from pyRBC import rbc_postprocess as rpost
levels = linspace(0.01,0.1,10)
persname = '/Users/jberwald/github/local/caja-matematica/pyRBC/data/gauss_peak/Gnoise/gauss_Gnoise'
for x in levels:
noise_level = str( x )
# remove the decimal (split on '.', then join the list with '.' removed)
noise_level = ''.join( noise_level.split( '.' ) )
fname = persname + noise_level + '_1.txt'
fig = rpost.plot_diagram_std( fname, scale=100, show_fig=False )
fig.savefig( persname + noise_level + '_dia.png', dpi=200 )