-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTestVec.agda
40 lines (32 loc) · 1.04 KB
/
TestVec.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
{-# OPTIONS --rewriting --allow-unsolved-metas #-}
open import II using (PS; P; S)
open import EWRSg
open import Lib
module TestVec (A : Set) (N : Set) (z : N) (s : N → N)
(V' : Set) (n' : V') (c' : A → N → V' → V')
(V : N → Set) (n : V z) (c : A → (n : N) → V n → V (s n)) where
Γ : Con
Γ = ∙ ▶S Π̂S N (λ _ → U)
▶P El (âppS vz z)
▶P Π̂P A (λ a → Π̂P N (λ n' → ΠP (âppS (vs{S}{P} vz) n') (El (âppS (vs{S}{P} (vs{S}{P} vz)) (s n')))))
{-
Γsg : C'on'.ᴬ Γ
Γsg = C'on'.sg Γ (lift tt , )
(lift tt , e)
(lift tt , C'w , Tw)
(lift tt , ew)
-}
Γwc : _
Γwc = Con.wc Γ {lift tt , V'}
(lift tt , n' , c')
Γw : _
Γw = Con.w Γ {lift tt , V'}
(lift tt , n' , c')
ΓRc : _
ΓRc = Con.Rc Γ {lift tt , V'}
(lift tt , n' , c')
(lift tt , V , n , c)
ΓR : _
ΓR = Con.R Γ {lift tt , V'}
(lift tt , n' , c')
(lift tt , V , n , c)