-
Notifications
You must be signed in to change notification settings - Fork 2.1k
/
Copy pathHeap_Sort.rb
171 lines (156 loc) · 3.76 KB
/
Heap_Sort.rb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# NOTE: This kind of dynamic method addition to in-built classes is called
# MONKEY PATCHING(that's right) and its beautiful when done carefully
# This implementation does not factor in that safety.
#
# Many suggest against monkey patching because it could turn into a
# nightmare in production due to the lack of concrete standard documentation
#
# REFERENCE THIS FOR TIPS
# http://www.justinweiss.com/articles/3-ways-to-monkey-patch-without-making-a-mess/
# HAPPY MONKEY PATCHING!
# Public: In-Built Integer class override
# Extended Integer class methods to get the feel of how much a pseudo code
# can be related to interpreted code
# Methods are invoked on an integer
#
# Examples
#
# 10.parent
# => 5
# 10.left
# => 20
# 10.right
# => 21
class Integer
def parent
( self / 2 ).floor
end
def left
( 2 * self )
end
def right
( 2 * self ) + 1
end
def half
( self / 2 ).floor
end
end
# Public: In-Built Array class override
# Extended array class to add a method heap_size to be as close to the
# textbook as possible
#
# Examples
#
# [1, 2, 3, 4].heap_size
# => nil
# [1, 2, 3, 4].heap_size = 10
# [1, 2, 3, 4].heap_size
# => 10
class Array
attr_accessor :heap_size
end
# Public: Ensures the max-heap property is being maintained from the index provided
# Recursive, Max-Heap property A[parent] >= A[left] as well as A[right]
#
# ARGS:
# arr - Input array
# i - Index at which the Max-Heap property is to be applied
#
# RETURN: nil
#
# COMPLEXITY: Θ(lgn)
#
# Examples
# arr = [5, 3, 8, 7, 9, 6, 2, 4, 1]
# max_heapify(arr, 5)
#
# Modifies the provided array.
def max_heapify(arr, i)
arr.heap_size ||= arr.length
l = i.left
r = i.right
largest = (l <= arr.heap_size-1 && arr[l] > arr[i]) ? l : i
largest = r if (r <= arr.heap_size-1 && arr[r] > arr[largest])
if largest != i
arr[i], arr[largest] = arr[largest], arr[i]
max_heapify(arr, largest)
end
end
# Public: Ensures the min-heap property is being maintained from the index provided
# Recursive, Min-Heap property A[parent] <= A[left] as well as A[right]
#
# ARGS:
# arr - Input array
# i - Index at which the Min-Heap property is to be applied
#
# RETURN: nil
#
# COMPLEXITY: Θ(lgn)
#
# Examples
# arr = [5, 3, 8, 7, 9, 6, 2, 4, 1]
# min_heapify(arr, 5)
#
# Modifies the provided array.
def min_heapify(arr, i)
arr.heap_size ||= arr.length
l = i.left
r = i.right
smallest = (l <= arr.heap_size-1 && arr[l] < arr[i]) ? l : i
smallest = r if (l <= arr.heap_size-1 && arr[l] < arr[smallest])
if smallest != i
arr[i], arr[smallest] = arr[smallest], arr[i]
min_heapify(arr, smallest)
end
end
# Public: Re-order the input array to adhere to the Max-Heap property at all indices
#
# ARGS:
# arr - Input array
#
# RETURN: nil
#
# Examples
# arr = [5, 3, 8, 7, 9, 6, 2, 4, 1]
# build_max_heap(arr)
#
# Modifies the provided array.
def build_max_heap(arr)
arr.heap_size = arr.length
(0..arr.length.half).reverse_each do |i|
max_heapify(arr, i)
end
end
# Public: Sorts the array by adhering to the Max-Heap property and simulataneously
# decreasing the heap size
#
# ARGS:
# arr - Input array
#
# RETURN: Array
#
# Examples
# arr = [5, 3, 8, 7, 9, 6, 2, 4, 1]
# heap_sort(arr)
# => [1, 2, 3, 4, 5, 6, 7, 8, 9]
#
# Modifies the provided array.
def heap_sort(arr)
build_max_heap(arr)
(1..(arr.length-1)).reverse_each do |i|
arr[0], arr[i] = arr[i], arr[0]
arr.heap_size -= 1
max_heapify(arr, 0)
end
arr
end
def unit_test_heap_sort
arr = [5, 3, 8, 7, 9, 6, 2, 4, 1]
ok = (heap_sort(arr) == [1, 2, 3, 4, 5, 6, 7, 8, 9])
if ok
p "HEAP SORT - OK"
else
raise "RESULT AND EXPECTED ARRAY DOES NOT MATCH"
end
end
unit_test_heap_sort