-
Notifications
You must be signed in to change notification settings - Fork 2.1k
/
Copy pathBinarySearchTree.rb
509 lines (460 loc) · 14.8 KB
/
BinarySearchTree.rb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
# THESE METHODS RESEMBLE CORMEN(CLRS) TEXTBOOK PSEUDO CODE
# INDEX
# inorder_tree_walk
# preoder_tree_walk
# postorder_tree_walk
# tree_search
# iterative_tree_search
# tree_minimum
# tree_maximum
# tree_successor
# tree_insert
# tree_delete -> transplant
# Public: Analogous to a struct in C/C++ for building linked lists.
# This class only contains an initialize method which acts a constructor for
# setting and accessing the object properties
#
# There are multiple ways this can be defined, this is my personal favorite
# Other ways are listed at the bottom of the file
# Choose whatever is convenient for YOU.
#
# Examples
# Tree.new(nil)
# # => #<Tree:0x007ffeab2187a0 @root=nil>
class Tree
attr_accessor :root
def initialize(root)
@root = root
end
end
# Public: Analogous to a struct in C/C++ for building linked lists.
# This class only contains an initialize method which acts a constructor for
# setting and accessing the object properties
#
# NOTE: Two constructors, one with satellite data and another without. The later
# one will be used predominantly
#
# Examples
# Node.new(10, "HELLO", nil, nil, nil)
# # => #<Node:0x007ffeab2187a0 @key=10, @satellite_data="HELLO", @p=nil, @left=nil, @right=nil>
class Node
attr_accessor :key, :satellite_data, :p, :left, :right
def initialize(key, satellite_data, p, left, right)
@key, @satellite_data, @p, @left, @right = key, satellite_data, p, left, right
end
# Node.new(10, nil, nil, nil)
# # => #<Node:0x007ffeab2187a0 @key=10, @p=nil, @left=nil, @right=nil>
def initialize(key, p, left, right)
@key, @p, @left, @right = key, p, left, right
end
end
# TREE structure
# F
# / \
# B G
# / \ \
# A D I
# / \ /
# C E H
# tree = Tree.new(F) NOTE: Whole tree is assumed to have been constructed alread
# Public: Prints the elements inside tree nodes in a LEFT - PARENT - RIGHT manner
#
# x - Node, Preferably a root node
#
# Examples
# NOTE: Based on the mock tree structure at LINE:61
# inorder_tree_walk(F)
# => A B C D E F G H I
def inorder_tree_walk(x)
unless x.nil?
inorder_tree_walk(x.left)
p x.key
inorder_tree_walk(x.right)
end
end
# Public: Prints the elements inside tree nodes in a PARENT - LEFT - RIGHT manner
#
# x - Node, Preferably a root node
#
# Examples
# NOTE: Based on the mock tree structure at LINE:61
# preoder_tree_walk(F)
# => F B A D C E G I H
def preoder_tree_walk(x)
unless x.nil?
p x.key
preoder_tree_walk(x.left)
preoder_tree_walk(x.right)
end
end
# Public: Prints the elements inside tree nodes in a LEFT - RIGHT - PARENT manner
#
# x - Node, Preferably a root node
#
# Examples
# NOTE: Based on the mock tree structure at LINE:61
# postorder_tree_walk(F)
# => A C E D B H I G F
def postorder_tree_walk(x)
unless x.nil?
postorder_tree_walk(x.left)
postorder_tree_walk(x.right)
p x.key
end
end
# Public: Traverses and finds the element if present by using the Binary tree
# property - lesser elements on left and greater elements on right
# Recursive strategy
#
# x - Node, Preferably a root node
# k - Key to be searched
#
# Examples
# NOTE: Based on the mock tree structure at LINE:61
# tree_search(F, 'I')
# => I
def tree_search(x, k)
return x if (x.nil? || k == x.key)
return (k < x.key) ? tree_search(x.left, k) : tree_search(x.right, k)
end
# Public: Traverses and finds the element if present by using the Binary tree
# property - lesser elements on left and greater elements on right
# Iterative strategy
#
# x - Node, Preferably a root node
# k - Key to be searched
#
# Examples
# NOTE: Based on the mock tree structure at LINE:61
# tree_search(F, 'I')
# => I
def iterative_tree_search(x, k)
while !x.nil? && k != x.key
x = (k < x.key) ? x.left : x.right
end
x
end
# Public: Traverses to LEFT and finds the minimum element using the Binary tree
# property - lesser elements on left and greater elements on right
#
# Node, Root/Subtree node
#
# Examples
# NOTE: Based on the mock tree structure at LINE:61
# tree_minimum(F)
# => A
def tree_minimum(x)
return if x.nil?
while !x.left.nil?
x = x.left
end
x
end
# Public: Traverses to RIGHT and finds the maximum element using the Binary tree
# property - lesser elements on left and greater elements on right
#
# Node, Root/Subtree node
#
# Examples
# NOTE: Based on the mock tree structure at LINE:61
# tree_maximum(F)
# => H
def tree_maximum(x)
return if x.nil?
while !x.right.nil?
x = x.right
end
x
end
# Public: Finds the next biggest element to the given node in a Binary tree
#
# Node, Root/Subtree node
#
# Examples
# NOTE: Based on the mock tree structure at LINE:61
# tree_successor(F)
# => G
def tree_successor(x)
return if x.nil?
return tree_minimum(x.right) unless x.right.nil?
y = x.p
while !y.nil? && x == y.right
x = y
y = y.p
end
y
end
# Public: Finds the highest element that is just smaller than the provided node
#
# Node, Root/Subtree node
#
# Examples
# NOTE: Based on the mock tree structure at LINE:61
# tree_predecessor(F)
# => E
def tree_predecessor(x)
return if x.nil?
return tree_maximum(x.left) unless x.left.nil?
y = x.p
while !y.nil? && x == y.left
x = y
y = y.p
end
y
end
# Public: Inserts a node at the appropriate location in the tree without not disturbing
# Binary search tree property
#
# t - Tree structure
# z - Node to be INSERTED
#
# Examples
# NOTE: Based on the mock tree structure at LINE:61
# tree_insert(t, J)
# TREE structure
# F
# / \
# B G
# / \ \
# A D I
# / \ / \
# C E H J(INSERTED NODE)
def tree_insert(t, z)
return if (t.nil? || z.nil?)
y = nil
x = t.root
while !x.nil?
y = x
(z.key < x.key) ? (x = x.left) : (x = x.right)
end
z.p = y
if y.nil?
t.root = z
elsif z.key < y.key
y.left = z
else
y.right = z
end
end
# Public: Replaces the subtree of a node with subtree of another node
#
# t - Tree structure
# u - Node which gets replaced
# v - Node which replaces u
#
# Examples
# NOTE: Based on the mock tree structure at LINE:61 with an inserted node J
# transplant(t, G, I)
# F
# / \
# B I
# / \ / \
# A D H J
# / \
# C E
def transplant(t, u, v)
return if (u.nil? || v.nil? || t.nil?)
if u.p.nil?
t.root = v
elsif u == u.p.left
u.p.left = v
else
u.p.right = v
end
v.p = u.p unless v.nil?
end
# Public: Deletes a node at the appropriate location in the tree without disturbing
# Binary search tree property
# NOTE: Uses SUCCESSOR transplant i.e next largest element to the deletable node
#
# t - Tree structure
# z - Node to be DELETED
#
# Examples
# NOTE: Based on the mock tree structure at LINE:61 with an inserted node J
# TREE structure
# F
# / \
# B G
# / \ \
# A D I
# / \ / \
# C E H J
# tree_delete(t, F) tree_delete(t, B) tree_delete(t, D)
# G F F
# / \ / \ / \
# B I C G B G
# / \ / \ / \ \ / \ \
# A D H J A D I A E I
# / \ \ / \ / / \
# C E E H J C H J
def tree_delete(t, z)
return if z.nil?
if z.left.nil?
transplant(t, z, z.right)
elsif z.right.nil?
transplant(t, z, z.left)
else
y = tree_minimum(z.right)
if y.p != z
transplant(t, y, y.right)
y.right = z.right
y.right.p = y
end
transplant(t, z, y)
y.left = z.left
y.left.p = y
end
end
# Public: Deletes a node at the appropriate location in the tree without disturbing
# Binary search tree property
# NOTE: Uses PREDECESSOR transplant i.e next largest element to the deletable node
#
# t - Tree structure
# z - Node to be DELETED
#
# Examples
# NOTE: Based on the mock tree structure at LINE:61 with an inserted node J
# TREE structure
# F
# / \
# B G
# / \ \
# A D I
# / \ / \
# C E H J
# tree_delete(t, F) tree_delete(t, B) tree_delete(t, D)
# E F F
# / \ / \ / \
# B G A G B G
# / \ \ \ \ / \ \
# A D I D I A C I
# / / \ / \ / \ \ / \
# C H J C E H J E H J
def tree_delete_predecessor(t, z)
if z.left.nil?
transplant(t, z, z.right)
elsif z.right.nil?
transplant(t, z, z.left)
else
y = tree_maximum(z.left)
if y.p != z
transplant(t, y, y.left)
y.left = z.left
y.left.p = y
end
transplant(t, z, y)
y.right = z.right
y.right.p = y
end
end
# TEST inorder_tree_walk
# preoder_tree_walk
# postorder_tree_walk
# tree_search
# iterative_tree_search
# tree_minimum
# tree_maximum
# tree_successor
# tree_predecessor
# tree_insert
# tree_delete
# tree_delete_predecessor
def unit_test_binary_tree
node_a = Node.new('A', nil, nil, nil)
node_b = Node.new('B', nil, nil, nil)
node_c = Node.new('C', nil, nil, nil)
node_d = Node.new('D', nil, nil, nil)
node_e = Node.new('E', nil, nil, nil)
node_f = Node.new('F', nil, nil, nil)
node_g = Node.new('G', nil, nil, nil)
node_h = Node.new('H', nil, nil, nil)
node_i = Node.new('I', nil, nil, nil)
node_j = Node.new('J', nil, nil, nil)
tree = Tree.new(nil)
p "-------------------- BEGIN CONSTRUCTING TREE -------------------- "
[node_f, node_b, node_g, node_a, node_d, node_c, node_e, node_i, node_h].each_with_index do |x, i|
tree_insert(tree, x)
end
p " F "
p " // \\ "
p " B G "
p " // \\ \\ "
p " A D I "
p " // \\ // "
p " C E H "
p "-------------------- END CONSTRUCTING TREE -------------------- "
print "\n"
p "-------------------- BEGIN INRODER TREE WALK -------------------- "
p inorder_tree_walk(tree.root)
p "-------------------- END INRODER TREE WALK -------------------- "
print "\n"
p "-------------------- BEGIN PREORDER TREE WALK -------------------- "
p preoder_tree_walk(tree.root)
p "-------------------- END PREORDER TREE WALK -------------------- "
print "\n"
p "-------------------- BEGIN POSTORDER TREE WALK -------------------- "
p postorder_tree_walk(tree.root)
p "-------------------- END PREORDER TREE WALK -------------------- "
print "\n"
p "-------------------- BEGIN RECURSIVE TREE SEARCH -------------------- "
p tree_search(tree.root, 'I')
p "-------------------- END RECURSIVE TREE SEARCH -------------------- "
print "\n"
p "-------------------- BEGIN ITERATIVE TREE SEARCH -------------------- "
p iterative_tree_search(tree.root, 'I')
p "-------------------- END ITERATIVETREE SEARCH -------------------- "
print "\n"
p "-------------------- BEGIN SEARCHING FOR TREE MIN -------------------- "
p tree_minimum(tree.root)
p "-------------------- END SEARCHING FOR TREE MIN -------------------- "
print "\n"
p "-------------------- BEGIN SEARCHING TREE MAX -------------------- "
p tree_maximum(tree.root)
p "-------------------- END SEARCHING TREE MAX -------------------- "
print "\n"
p "-------------------- BEGIN SEARCHING FOR SUCCESSOR -------------------- "
p tree_successor(node_g)
p "-------------------- END SEARCHING FOR SUCCESSOR -------------------- "
print "\n"
p "-------------------- BEGIN SEARCHING FOR PREDECESSOR -------------------- "
p tree_predecessor(node_g)
p "-------------------- END SEARCHING FOR PREDECESSOR -------------------- "
print "\n"
p "-------------------- BEGIN NODE INSERTION -------------------- "
tree_insert(tree, node_j)
p " F "
p " // \\ "
p " B G "
p " // \\ \\ "
p " A D I "
p " // \\ // \\ "
p " C E H J "
p "-------------------- END NODE INSERTION -------------------- "
print "\n"
p "-------------------- BEGIN NODE DELETION (SUCCESSOR) -------------------- "
tree_delete(tree, node_d)
p " F "
p " // \\ "
p " B G "
p " // \\ \\ "
p " A E I "
p " // // \\ "
p " C H J "
p "-------------------- END NODE DELETION (SUCCESSOR) -------------------- "
preoder_tree_walk(tree.root)
print "\n"
p "-------------------- BEGIN NODE DELETION (PREDECESSOR) -------------------- "
tree_delete_predecessor(tree, node_b)
p " F "
p " // \\ "
p " A G "
p " \\ \\ "
p " E I "
p " // // \\ "
p " C H J "
p "-------------------- END NODE DELETION (PREDECESSOR) -------------------- "
preoder_tree_walk(tree.root)
end
# Uncomment the lines below to run the minimal unit tests
unit_test_binary_tree