Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Gradients and activations shape in the VIT example code #511

Open
lunaryan opened this issue Jun 27, 2024 · 6 comments
Open

Gradients and activations shape in the VIT example code #511

lunaryan opened this issue Jun 27, 2024 · 6 comments

Comments

@lunaryan
Copy link

lunaryan commented Jun 27, 2024

I tried to run the vit example code, however, I noticed the following errors.

Python 3.9.18 (main, Sep 11 2023, 13:41:44)
[GCC 11.2.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from pytorch_grad_cam import GradCAM
>>> import torch
>>> model = torch.hub.load('facebookresearch/deit:main',
... 'deit_tiny_patch16_224', pretrained=True)
Using cache found in /home/.cache/torch/hub/facebookresearch_deit_main
>>> target_layers = [model.blocks[-1].norm1]
>>> image = torch.rand(1,3,224,224)
>>> cam = GradCAM(model=model, target_layers=target_layers)
>>> grayscale_cam = cam(input_tensor=image, targets=None)
(1, 197, 192)
Traceback (most recent call last):
File "", line 1, in
File "/data4/user/miniconda3/envs/anti-dreambooth/lib/python3.9/site-packages/pytorch_grad_cam/base_cam.py", line 188, in call
return self.forward(input_tensor, targets, eigen_smooth)
File "/data4/user/miniconda3/envs/anti-dreambooth/lib/python3.9/site-packages/pytorch_grad_cam/base_cam.py", line 112, in forward
cam_per_layer = self.compute_cam_per_layer(input_tensor, targets, eigen_smooth)
File "/data4/user/miniconda3/envs/anti-dreambooth/lib/python3.9/site-packages/pytorch_grad_cam/base_cam.py", line 143, in compute_cam_per_layer
cam = self.get_cam_image(input_tensor, target_layer, targets, layer_activations, layer_grads, eigen_smooth)
File "/data4/user/miniconda3/envs/anti-dreambooth/lib/python3.9/site-packages/pytorch_grad_cam/base_cam.py", line 66, in get_cam_image
weights = self.get_cam_weights(input_tensor, target_layer, targets, activations, grads)
File "/data4/user/miniconda3/envs/anti-dreambooth/lib/python3.9/site-packages/pytorch_grad_cam/grad_cam.py", line 32, in get_cam_weights
raise ValueError("Invalid grads shape."
ValueError: Invalid grads shape.Shape of grads should be 4 (2D image) or 5 (3D image).

If I comment out the error throwing logic in grad_cam.py, then the shape check in

raise ValueError(f"Invalid activation shape. Get {len(activations.shape)}.")
also fails.

Does the shape really matter? Is there a way to fix this or just work around it? Thanks!

pytorch '2.1.0+cu121', grad-cam 1.5.2, ubuntu 18.04

@huanhuanyuan7
Copy link

Did you resolve this issue? I have a similar problem:
Traceback (most recent call last):
File "/root/.pycharm_helpers/pydev/pydevd.py", line 1496, in _exec
pydev_imports.execfile(file, globals, locals) # execute the script
File "/root/.pycharm_helpers/pydev/_pydev_imps/_pydev_execfile.py", line 18, in execfile
exec(compile(contents+"\n", file, 'exec'), glob, loc)
File "/workspace/add-lora-ssf-augfeature/grad-CAM/UIA-ViT-main/grad_cam_visualization.py", line 183, in
main(args)
File "/workspace/add-lora-ssf-augfeature/grad-CAM/UIA-ViT-main/grad_cam_visualization.py", line 159, in main
targets=target_category)
File "/workspace/add-lora-ssf-augfeature/grad-CAM/UIA-ViT-main/pytorch_grad_cam/base_cam.py", line 186, in call
return self.forward(input_tensor, targets, eigen_smooth)
File "/workspace/add-lora-ssf-augfeature/grad-CAM/UIA-ViT-main/pytorch_grad_cam/base_cam.py", line 110, in forward
cam_per_layer = self.compute_cam_per_layer(input_tensor, targets, eigen_smooth)
File "/workspace/add-lora-ssf-augfeature/grad-CAM/UIA-ViT-main/pytorch_grad_cam/base_cam.py", line 141, in compute_cam_per_layer
cam = self.get_cam_image(input_tensor, target_layer, targets, layer_activations, layer_grads, eigen_smooth)
File "/workspace/add-lora-ssf-augfeature/grad-CAM/UIA-ViT-main/pytorch_grad_cam/base_cam.py", line 66, in get_cam_image
weights = self.get_cam_weights(input_tensor, target_layer, targets, activations, grads)
File "/workspace/add-lora-ssf-augfeature/grad-CAM/UIA-ViT-main/pytorch_grad_cam/grad_cam.py", line 23, in get_cam_weights
if len(grads.shape) == 4:
AttributeError: 'NoneType' object has no attribute 'shape'
python-BaseException

@loiqy
Copy link

loiqy commented Jul 2, 2024

Did you resolve this issue? I have a similar problem: Traceback (most recent call last): File "/root/.pycharm_helpers/pydev/pydevd.py", line 1496, in _exec pydev_imports.execfile(file, globals, locals) # execute the script File "/root/.pycharm_helpers/pydev/_pydev_imps/_pydev_execfile.py", line 18, in execfile exec(compile(contents+"\n", file, 'exec'), glob, loc) File "/workspace/add-lora-ssf-augfeature/grad-CAM/UIA-ViT-main/grad_cam_visualization.py", line 183, in main(args) File "/workspace/add-lora-ssf-augfeature/grad-CAM/UIA-ViT-main/grad_cam_visualization.py", line 159, in main targets=target_category) File "/workspace/add-lora-ssf-augfeature/grad-CAM/UIA-ViT-main/pytorch_grad_cam/base_cam.py", line 186, in call return self.forward(input_tensor, targets, eigen_smooth) File "/workspace/add-lora-ssf-augfeature/grad-CAM/UIA-ViT-main/pytorch_grad_cam/base_cam.py", line 110, in forward cam_per_layer = self.compute_cam_per_layer(input_tensor, targets, eigen_smooth) File "/workspace/add-lora-ssf-augfeature/grad-CAM/UIA-ViT-main/pytorch_grad_cam/base_cam.py", line 141, in compute_cam_per_layer cam = self.get_cam_image(input_tensor, target_layer, targets, layer_activations, layer_grads, eigen_smooth) File "/workspace/add-lora-ssf-augfeature/grad-CAM/UIA-ViT-main/pytorch_grad_cam/base_cam.py", line 66, in get_cam_image weights = self.get_cam_weights(input_tensor, target_layer, targets, activations, grads) File "/workspace/add-lora-ssf-augfeature/grad-CAM/UIA-ViT-main/pytorch_grad_cam/grad_cam.py", line 23, in get_cam_weights if len(grads.shape) == 4: AttributeError: 'NoneType' object has no attribute 'shape' python-BaseException

I have a similar problem, too. I tried to run it for DINOv2:

  File "/code/finetune-v2/visualize_gradcam.py", line 208, in gradcam_dataset
    gradcam_one_img(img_path)
  File "/code/finetune-v2/visualize_gradcam.py", line 152, in gradcam_one_img
    grayscale_cam = cam(input_tensor=img_tensor, targets=targets)
  File "/opt/conda/envs/dinov2/lib/python3.9/site-packages/pytorch_grad_cam/base_cam.py", line 186, in __call__
    return self.forward(input_tensor, targets, eigen_smooth)
  File "/opt/conda/envs/dinov2/lib/python3.9/site-packages/pytorch_grad_cam/base_cam.py", line 110, in forward
    cam_per_layer = self.compute_cam_per_layer(input_tensor, targets, eigen_smooth)
  File "/opt/conda/envs/dinov2/lib/python3.9/site-packages/pytorch_grad_cam/base_cam.py", line 141, in compute_cam_per_layer
    cam = self.get_cam_image(input_tensor, target_layer, targets, layer_activations, layer_grads, eigen_smooth)
  File "/opt/conda/envs/dinov2/lib/python3.9/site-packages/pytorch_grad_cam/base_cam.py", line 66, in get_cam_image
    weights = self.get_cam_weights(input_tensor, target_layer, targets, activations, grads)
  File "/opt/conda/envs/dinov2/lib/python3.9/site-packages/pytorch_grad_cam/grad_cam.py", line 23, in get_cam_weights
    if len(grads.shape) == 4:
AttributeError: 'NoneType' object has no attribute 'shape'

here is my code:

class Dino(nn.Module):
    def __init__(self, type, img_size, cls_num):
        super().__init__()
        # get feature model
        model = torch.hub.load(
            '', type, source='local'
        ).to(device)
        autocast_ctx = partial(
            torch.cuda.amp.autocast, enabled=True, dtype=torch.float16
        )
        self.feature_model = ModelWithIntermediateLayers(
            model, n_last_blocks=1, autocast_ctx=autocast_ctx
        ).to(device)

        with torch.no_grad():
            sample_input = torch.randn(1, 3, *img_size).to(device)
            sample_output = self.feature_model(sample_input)

        # get linear readout
        out_dim = create_linear_input(
            sample_output, use_n_blocks=1, use_avgpool=True
        ).shape[1]
        self.classifier = LinearClassifier(
            out_dim, use_n_blocks=1, use_avgpool=True, num_classes=cls_num
        ).to(device)

    def forward(self, x):
        x = self.feature_model(x)
        x = self.classifier(x)
        return x

data_transforms = {
    'train': transforms.Compose([
        transforms.Resize(args.image_size),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
    'val': transforms.Compose([
        transforms.Resize(args.image_size),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
}

model = Dino(args.arch, args.image_size, 2)
# print(model)
checkpoint_path = f'/code/finetune-v2/best_models/best_model_{model_name}.pth'
checkpoint = torch.load(checkpoint_path, map_location='cpu')
model.load_state_dict(checkpoint)
model.eval()
model = model.cuda()
                      
target_layers = [model.feature_model.feature_model.blocks[-1].norm1]
# target_layers = [model.feature_model.feature_model.blocks[10]]
print(target_layers[0])

targets = [ClassifierOutputTarget(0)]

def reshape_transform(tensor):
    result = tensor[:, 1:, :].reshape(tensor.size(0),
                                      args.image_size[0] // 14, args.image_size[1] // 14, tensor.size(2))

    # Bring the channels to the first dimension,
    # like in CNNs.
    result = result.transpose(2, 3).transpose(1, 2)
    return result

def gradcam_one_img(img_path):
    with GradCAM(model=model, target_layers=target_layers, reshape_transform=reshape_transform) as cam:
        rgb_img = Image.open(img_path).convert('RGB')
        img_tensor = data_transforms['val'](rgb_img).unsqueeze(0).cuda()
        print(img_tensor.shape)
#         outputs = model(img_tensor)
        grayscale_cam = cam(input_tensor=img_tensor, targets=targets)
#         grayscale_cam = cam(input_tensor=img_tensor, targets=targets)
        grayscale_cam = grayscale_cam[0, :]
        visualization = show_cam_on_image(rgb_img, grayscale_cam, use_rgb=True)
        print(visualization)
        return cam.outputs, visualization

gradcam_one_img(img_path)

@zermatt-luo
Copy link

I tried to run the vit example code, however, I noticed the following errors.

Python 3.9.18 (main, Sep 11 2023, 13:41:44) [GCC 11.2.0] :: Anaconda, Inc. on linux Type "help", "copyright", "credits" or "license" for more information. >>> from pytorch_grad_cam import GradCAM >>> import torch >>> model = torch.hub.load('facebookresearch/deit:main', ... 'deit_tiny_patch16_224', pretrained=True) Using cache found in /home/.cache/torch/hub/facebookresearch_deit_main >>> target_layers = [model.blocks[-1].norm1] >>> image = torch.rand(1,3,224,224) >>> cam = GradCAM(model=model, target_layers=target_layers) >>> grayscale_cam = cam(input_tensor=image, targets=None) (1, 197, 192) Traceback (most recent call last): File "", line 1, in File "/data4/user/miniconda3/envs/anti-dreambooth/lib/python3.9/site-packages/pytorch_grad_cam/base_cam.py", line 188, in call return self.forward(input_tensor, targets, eigen_smooth) File "/data4/user/miniconda3/envs/anti-dreambooth/lib/python3.9/site-packages/pytorch_grad_cam/base_cam.py", line 112, in forward cam_per_layer = self.compute_cam_per_layer(input_tensor, targets, eigen_smooth) File "/data4/user/miniconda3/envs/anti-dreambooth/lib/python3.9/site-packages/pytorch_grad_cam/base_cam.py", line 143, in compute_cam_per_layer cam = self.get_cam_image(input_tensor, target_layer, targets, layer_activations, layer_grads, eigen_smooth) File "/data4/user/miniconda3/envs/anti-dreambooth/lib/python3.9/site-packages/pytorch_grad_cam/base_cam.py", line 66, in get_cam_image weights = self.get_cam_weights(input_tensor, target_layer, targets, activations, grads) File "/data4/user/miniconda3/envs/anti-dreambooth/lib/python3.9/site-packages/pytorch_grad_cam/grad_cam.py", line 32, in get_cam_weights raise ValueError("Invalid grads shape." ValueError: Invalid grads shape.Shape of grads should be 4 (2D image) or 5 (3D image).

If I comment out the error throwing logic in grad_cam.py, then the shape check in

raise ValueError(f"Invalid activation shape. Get {len(activations.shape)}.")

also fails.
Does the shape really matter? Is there a way to fix this or just work around it? Thanks!

pytorch '2.1.0+cu121', grad-cam 1.5.2, ubuntu 18.04

Hello, did you resolve this issue? I have a similar problem!

@hhuzzz
Copy link

hhuzzz commented Jul 25, 2024

I met the same problem!!

@ciroimmobile
Copy link

Did you resolve this issue? I have a similar problem: Traceback (most recent call last): File "/root/.pycharm_helpers/pydev/pydevd.py", line 1496, in _exec pydev_imports.execfile(file, globals, locals) # execute the script File "/root/.pycharm_helpers/pydev/_pydev_imps/_pydev_execfile.py", line 18, in execfile exec(compile(contents+"\n", file, 'exec'), glob, loc) File "/workspace/add-lora-ssf-augfeature/grad-CAM/UIA-ViT-main/grad_cam_visualization.py", line 183, in main(args) File "/workspace/add-lora-ssf-augfeature/grad-CAM/UIA-ViT-main/grad_cam_visualization.py", line 159, in main targets=target_category) File "/workspace/add-lora-ssf-augfeature/grad-CAM/UIA-ViT-main/pytorch_grad_cam/base_cam.py", line 186, in call return self.forward(input_tensor, targets, eigen_smooth) File "/workspace/add-lora-ssf-augfeature/grad-CAM/UIA-ViT-main/pytorch_grad_cam/base_cam.py", line 110, in forward cam_per_layer = self.compute_cam_per_layer(input_tensor, targets, eigen_smooth) File "/workspace/add-lora-ssf-augfeature/grad-CAM/UIA-ViT-main/pytorch_grad_cam/base_cam.py", line 141, in compute_cam_per_layer cam = self.get_cam_image(input_tensor, target_layer, targets, layer_activations, layer_grads, eigen_smooth) File "/workspace/add-lora-ssf-augfeature/grad-CAM/UIA-ViT-main/pytorch_grad_cam/base_cam.py", line 66, in get_cam_image weights = self.get_cam_weights(input_tensor, target_layer, targets, activations, grads) File "/workspace/add-lora-ssf-augfeature/grad-CAM/UIA-ViT-main/pytorch_grad_cam/grad_cam.py", line 23, in get_cam_weights if len(grads.shape) == 4: AttributeError: 'NoneType' object has no attribute 'shape' python-BaseException

I have a similar problem, too. I tried to run it for DINOv2:

  File "/code/finetune-v2/visualize_gradcam.py", line 208, in gradcam_dataset
    gradcam_one_img(img_path)
  File "/code/finetune-v2/visualize_gradcam.py", line 152, in gradcam_one_img
    grayscale_cam = cam(input_tensor=img_tensor, targets=targets)
  File "/opt/conda/envs/dinov2/lib/python3.9/site-packages/pytorch_grad_cam/base_cam.py", line 186, in __call__
    return self.forward(input_tensor, targets, eigen_smooth)
  File "/opt/conda/envs/dinov2/lib/python3.9/site-packages/pytorch_grad_cam/base_cam.py", line 110, in forward
    cam_per_layer = self.compute_cam_per_layer(input_tensor, targets, eigen_smooth)
  File "/opt/conda/envs/dinov2/lib/python3.9/site-packages/pytorch_grad_cam/base_cam.py", line 141, in compute_cam_per_layer
    cam = self.get_cam_image(input_tensor, target_layer, targets, layer_activations, layer_grads, eigen_smooth)
  File "/opt/conda/envs/dinov2/lib/python3.9/site-packages/pytorch_grad_cam/base_cam.py", line 66, in get_cam_image
    weights = self.get_cam_weights(input_tensor, target_layer, targets, activations, grads)
  File "/opt/conda/envs/dinov2/lib/python3.9/site-packages/pytorch_grad_cam/grad_cam.py", line 23, in get_cam_weights
    if len(grads.shape) == 4:
AttributeError: 'NoneType' object has no attribute 'shape'

here is my code:

class Dino(nn.Module):
    def __init__(self, type, img_size, cls_num):
        super().__init__()
        # get feature model
        model = torch.hub.load(
            '', type, source='local'
        ).to(device)
        autocast_ctx = partial(
            torch.cuda.amp.autocast, enabled=True, dtype=torch.float16
        )
        self.feature_model = ModelWithIntermediateLayers(
            model, n_last_blocks=1, autocast_ctx=autocast_ctx
        ).to(device)

        with torch.no_grad():
            sample_input = torch.randn(1, 3, *img_size).to(device)
            sample_output = self.feature_model(sample_input)

        # get linear readout
        out_dim = create_linear_input(
            sample_output, use_n_blocks=1, use_avgpool=True
        ).shape[1]
        self.classifier = LinearClassifier(
            out_dim, use_n_blocks=1, use_avgpool=True, num_classes=cls_num
        ).to(device)

    def forward(self, x):
        x = self.feature_model(x)
        x = self.classifier(x)
        return x

data_transforms = {
    'train': transforms.Compose([
        transforms.Resize(args.image_size),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
    'val': transforms.Compose([
        transforms.Resize(args.image_size),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
}

model = Dino(args.arch, args.image_size, 2)
# print(model)
checkpoint_path = f'/code/finetune-v2/best_models/best_model_{model_name}.pth'
checkpoint = torch.load(checkpoint_path, map_location='cpu')
model.load_state_dict(checkpoint)
model.eval()
model = model.cuda()
                      
target_layers = [model.feature_model.feature_model.blocks[-1].norm1]
# target_layers = [model.feature_model.feature_model.blocks[10]]
print(target_layers[0])

targets = [ClassifierOutputTarget(0)]

def reshape_transform(tensor):
    result = tensor[:, 1:, :].reshape(tensor.size(0),
                                      args.image_size[0] // 14, args.image_size[1] // 14, tensor.size(2))

    # Bring the channels to the first dimension,
    # like in CNNs.
    result = result.transpose(2, 3).transpose(1, 2)
    return result

def gradcam_one_img(img_path):
    with GradCAM(model=model, target_layers=target_layers, reshape_transform=reshape_transform) as cam:
        rgb_img = Image.open(img_path).convert('RGB')
        img_tensor = data_transforms['val'](rgb_img).unsqueeze(0).cuda()
        print(img_tensor.shape)
#         outputs = model(img_tensor)
        grayscale_cam = cam(input_tensor=img_tensor, targets=targets)
#         grayscale_cam = cam(input_tensor=img_tensor, targets=targets)
        grayscale_cam = grayscale_cam[0, :]
        visualization = show_cam_on_image(rgb_img, grayscale_cam, use_rgb=True)
        print(visualization)
        return cam.outputs, visualization

gradcam_one_img(img_path)

I have the same problem, have you solved it?

@cydawn
Copy link

cydawn commented Sep 3, 2024

same problem
need to check the implemention of the transformer layer to match the target_layer, such as model.layer[-1].norm1

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

7 participants