-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathtfan_module.py
125 lines (91 loc) · 3.67 KB
/
tfan_module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
#! python
# -*- coding: utf-8 -*-
# Author: kun
# @Time: 2020-11-17 14:35
import re
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.utils.spectral_norm as spectral_norm
# Returns a function that creates a normalization function
def get_norm_layer(opt):
# helper function to get # output channels of the previous layer
def get_out_channel(layer):
if hasattr(layer, 'out_channels'):
return getattr(layer, 'out_channels')
return layer.weight.size(0)
# this function will be returned
def add_norm_layer(layer):
layer = spectral_norm(layer)
# remove bias in the previous layer, which is meaningless
# since it has no effect after normalization
if getattr(layer, 'bias', None) is not None:
delattr(layer, 'bias')
layer.register_parameter('bias', None)
norm_layer = nn.InstanceNorm2d(get_out_channel(layer), affine=False)
return nn.Sequential(layer, norm_layer)
return add_norm_layer
class TFAN_1D(nn.Module):
"""
as paper said, it has best performance when N=3, kernal_size in h is 5
"""
def __init__(self, norm_nc, ks=5, label_nc=128, N=3):
super().__init__()
self.param_free_norm = nn.InstanceNorm1d(norm_nc, affine=False)
self.repeat_N = N
# The dimension of the intermediate embedding space. Yes, hardcoded.
nhidden = 128
pw = ks // 2
self.mlp_shared = nn.Sequential(
nn.Conv1d(label_nc, nhidden, kernel_size=ks, padding=pw),
nn.ReLU()
)
self.mlp_gamma = nn.Conv1d(nhidden, norm_nc, kernel_size=ks, padding=pw)
self.mlp_beta = nn.Conv1d(nhidden, norm_nc, kernel_size=ks, padding=pw)
def forward(self, x, segmap):
# Part 1. generate parameter-free normalized activations
normalized = self.param_free_norm(x)
# Part 2. produce scaling and bias conditioned on semantic map
segmap = F.interpolate(segmap, size=x.size()[2:], mode='nearest')
# actv = self.mlp_shared(segmap)
temp = segmap
for i in range(self.repeat_N):
temp = self.mlp_shared(temp)
actv = temp
gamma = self.mlp_gamma(actv)
beta = self.mlp_beta(actv)
# apply scale and bias
out = normalized * (1 + gamma) + beta
return out
class TFAN_2D(nn.Module):
"""
as paper said, it has best performance when N=3, kernal_size in h is 5
"""
def __init__(self, norm_nc, ks=5, label_nc=128, N=3):
super().__init__()
self.param_free_norm = nn.InstanceNorm2d(norm_nc, affine=False)
self.repeat_N = N
# The dimension of the intermediate embedding space. Yes, hardcoded.
nhidden = 128
pw = ks // 2
self.mlp_shared = nn.Sequential(
nn.Conv2d(label_nc, nhidden, kernel_size=ks, padding=pw),
nn.ReLU()
)
self.mlp_gamma = nn.Conv2d(nhidden, norm_nc, kernel_size=ks, padding=pw)
self.mlp_beta = nn.Conv2d(nhidden, norm_nc, kernel_size=ks, padding=pw)
def forward(self, x, segmap):
# Part 1. generate parameter-free normalized activations
normalized = self.param_free_norm(x)
# Part 2. produce scaling and bias conditioned on semantic map
segmap = F.interpolate(segmap, size=x.size()[2:], mode='nearest')
# actv = self.mlp_shared(segmap)
temp = segmap
for i in range(self.repeat_N):
temp = self.mlp_shared(temp)
actv = temp
gamma = self.mlp_gamma(actv)
beta = self.mlp_beta(actv)
# apply scale and bias
out = normalized * (1 + gamma) + beta
return out