-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDistributiva_de_la_interseccion.lean
156 lines (138 loc) · 2.97 KB
/
Distributiva_de_la_interseccion.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import tactic
variable {α : Type*}
variables (s t u : set α)
-- ---------------------------------------------------------------------
-- Ejercicio. Demostrar que
-- s ∩ (t ∪ u) ⊆ (s ∩ t) ∪ (s ∩ u)
-- ----------------------------------------------------------------------
-- 1ª demostración
-- ===============
example : s ∩ (t ∪ u) ⊆ (s ∩ t) ∪ (s ∩ u) :=
begin
intros x hx,
have xs : x ∈ s := hx.1,
have xtu : x ∈ t ∪ u := hx.2,
cases xtu with xt xu,
{ left,
show x ∈ s ∩ t,
exact ⟨xs, xt⟩ },
{ right,
show x ∈ s ∩ u,
exact ⟨xs, xu⟩ },
end
-- Prueba
-- ======
/-
α : Type u_1,
s t u : set α
⊢ s ∩ (t ∪ u) ⊆ s ∩ t ∪ s ∩ u
>> intros x hx,
x : α,
hx : x ∈ s ∩ (t ∪ u)
⊢ x ∈ s ∩ t ∪ s ∩ u
>> have xs : x ∈ s := hx.1,
xs : x ∈ s
⊢ x ∈ s ∩ t ∪ s ∩ u
>> have xtu : x ∈ t ∪ u := hx.2,
⊢ xtu : x ∈ t ∪ u
>> cases xtu with xt xu,
| xt : x ∈ t
| ⊢ x ∈ s ∩ t ∪ s ∩ u
| >> { left,
| ⊢ x ∈ s ∩ t
| >> show x ∈ s ∩ t,
| ⊢ x ∈ s ∩ t
| >> exact ⟨xs, xt⟩ },
xu : x ∈ u
⊢ x ∈ s ∩ t ∪ s ∩ u
>> { right,
⊢ x ∈ s ∩ u
>> show x ∈ s ∩ u,
⊢ x ∈ s ∩ u
>> exact ⟨xs, xu⟩ },
no goals
-/
-- 2ª demostración
-- ===============
example : s ∩ (t ∪ u) ⊆ (s ∩ t) ∪ (s ∩ u) :=
begin
rintros x ⟨xs, xt | xu⟩,
{ left,
exact ⟨xs, xt⟩ },
{ right,
exact ⟨xs, xu⟩ },
end
-- Prueba
-- ======
/-
α : Type u_1,
s t u : set α
⊢ s ∩ (t ∪ u) ⊆ s ∩ t ∪ s ∩ u
>> rintros x ⟨xs, xt | xu⟩,
| x : α,
| xs : x ∈ s,
| xt : x ∈ t
| ⊢ x ∈ s ∩ t ∪ s ∩ u
| >> { left,
| ⊢ x ∈ s ∩ t
| >> exact ⟨xs, xt⟩ },
xu : x ∈ u
⊢ x ∈ s ∩ t ∪ s ∩ u
>> { right,
⊢ x ∈ s ∩ u
>> exact ⟨xs, xu⟩ },
no goals
-/
-- 3ª demostración
-- ===============
example : s ∩ (t ∪ u) ⊆ (s ∩ t) ∪ (s ∩ u) :=
begin
rw set.inter_distrib_left,
end
-- ---------------------------------------------------------------------
-- Ejercicio. Demostrar que
-- (s ∩ t) ∪ (s ∩ u) ⊆ s ∩ (t ∪ u)
-- ----------------------------------------------------------------------
example : (s ∩ t) ∪ (s ∩ u) ⊆ s ∩ (t ∪ u) :=
begin
rintros x (⟨xs,xt⟩ | ⟨xs,xu⟩),
{ split,
{ exact xs },
{ left,
exact xt }},
{ split,
{ exact xs },
{ right,
exact xu }},
end
-- Prueba
-- ======
/-
α : Type u_1,
s t u : set α
⊢ (s ∩ t) ∪ (s ∩ u) ⊆ s ∩ (t ∪ u)
>> rintros x (⟨xs,xt⟩ | ⟨xs,xu⟩),
| x : α,
| xs : x ∈ s,
| xt : x ∈ t
| ⊢ x ∈ s ∩ (t ∪ u)
| >> { split,
| | ⊢ x ∈ s
| | >> { exact xs },
| | ⊢ x ∈ t ∪ u
| | >> { left,
| | ⊢ x ∈ t
| | >> exact xt }},
x : α,
xs : x ∈ s,
xu : x ∈ u
⊢ x ∈ s ∩ (t ∪ u)
>> { split,
| ⊢ x ∈ s
| >> { exact xs },
⊢ x ∈ t ∪ u
>> { right,
⊢ x ∈ u
>> exact xu }},
no goals
-/