-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathAsociatividad_del_minimo.lean
86 lines (76 loc) · 2.49 KB
/
Asociatividad_del_minimo.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
-- ---------------------------------------------------------------------
-- Ejercicio. Sean a, b y c números reales. Demostrar que
-- min (min a b) c = min a (min b c)
-- ----------------------------------------------------------------------
import data.real.basic tactic
variables a b c : ℝ
-- 1ª demostración
-- ===============
-- Se usará el siguiente lema auxilar.
lemma aux1 : min (min a b) c ≤ min a (min b c) :=
begin
apply le_min,
{ show min (min a b) c ≤ a,
calc min (min a b) c
≤ min a b : min_le_left (min a b) c
... ≤ a : min_le_left a b },
{ show min (min a b) c ≤ min b c,
apply le_min,
{ show min (min a b) c ≤ b,
calc min (min a b) c
≤ min a b : min_le_left (min a b) c
... ≤ b : min_le_right a b },
{ show min (min a b) c ≤ c,
{ by exact min_le_right (min a b) c }}},
end
example :
min (min a b) c = min a (min b c) :=
begin
apply le_antisymm,
{ show min (min a b) c ≤ min a (min b c),
by exact aux1 a b c },
{ show min a (min b c) ≤ min (min a b) c,
calc min a (min b c)
= min (min b c) a : by apply min_comm
... = min (min c b) a : by {congr' 1, apply min_comm}
... ≤ min c (min b a) : by apply aux1
... = min c (min a b) : by {congr' 1, apply min_comm}
... = min (min a b) c : by apply min_comm },
end
-- 2ª demostración
-- ===============
-- Se usará el siguiente lema auxilar.
lemma aux2 : min (min a b) c ≤ min a (min b c) :=
begin
apply le_min,
{ calc min (min a b) c
≤ min a b : by simp [min_le_left]
... ≤ a : by simp [min_le_left] },
{ apply le_min,
{ calc min (min a b) c
≤ min a b : by simp [min_le_left]
... ≤ b : by simp [min_le_right] },
{ simp [min_le_right] }},
end
example : min (min a b) c = min a (min b c) :=
begin
apply le_antisymm,
{ by exact aux2 a b c },
{ calc min a (min b c)
= min (min b c) a : by simp [min_comm]
... = min (min c b) a : by simp [min_comm]
... ≤ min c (min b a) : by simp [aux2]
... = min c (min a b) : by simp [min_comm]
... = min (min a b) c : by simp [min_comm] },
end
-- 3ª demostración
-- ===============
example : min (min a b) c = min a (min b c) :=
begin
apply le_antisymm,
{ by exact aux2 a b c },
{ calc min a (min b c)
= min (min c b) a : by simp [min_comm]
... ≤ min c (min b a) : by simp [aux2]
... = min (min a b) c : by simp [min_comm] },
end