-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
365 lines (271 loc) · 13.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import os
import yaml
import torch
import random
import shutil
import datetime
import numpy as np
import torch.nn as nn
from tqdm import tqdm
from jiwer import wer
import torch.optim as optim
from argparse import ArgumentParser
from torch.utils.tensorboard import SummaryWriter
import torch.nn.functional as F
from IPython.display import clear_output
from torch.utils.data import DataLoader
from dataset import LibriDataset
from utils import TextTransform, save_spec, custom_collate, create_model
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel
from torch.utils.data.distributed import DistributedSampler
torch.manual_seed(0)
np.random.seed(0)
random.seed(0)
class Trainer:
def __init__(self, config, rank, world_size, from_checkpoint):
self.device = rank
self.world_size = world_size
# Parameters
self.batch_size = config["batch_size"]
self.checkpoint_dir = config["checkpoint_dir"]
self.start_epoch = 1
self.epochs = config["epochs"] + 1
self.use_onecyclelr = config["use_onecyclelr"]
self.num_workers = config["num_workers"]
# Data
self.train_set = LibriDataset(config, "train")
self.val_set = LibriDataset(config, "val")
self.train_loader = self.loader(self.train_set)
self.val_loader = self.loader(self.val_set)
self.processor = TextTransform()
# Model
self.model = create_model(
model=config["model"],
in_channels=config["spec_params"]["n_mels"],
out_channels=len(self.processor.char_map) + 1 # for blank token
)
self.model.to(self.device)
if self.world_size:
self.model = DistributedDataParallel(self.model, device_ids=[self.device])
self.criterion = nn.CTCLoss(blank=len(self.processor.char_map))
self.optimizer = optim.Adam(self.model.parameters(), lr=float(config["learning_rate"]), weight_decay=float(config["weight_decay"]))
if self.use_onecyclelr:
self.scheduler = self.oneCycleLR(config)
if from_checkpoint:
if os.path.exists(os.path.join(self.checkpoint_dir, "model_last.pt")):
if self.world_size:
map_location = {'cuda:%d' % 0: 'cuda:%d' % self.device}
self.load_checkpoint(self.checkpoint_dir, map_location)
print(f"=> Rank {self.device}. Loaded checkpoint")
else:
self.load_checkpoint(self.checkpoint_dir, map_location=self.device)
print("=> Loaded checkpoint")
with open(os.path.join(self.checkpoint_dir, "last_epoch.txt"), "r") as f:
last_epoch = int(f.read())
last_batch_idx = last_epoch * len(self.train_loader) - 1
self.start_epoch = last_epoch + 1
if self.use_onecyclelr:
self.scheduler = self.oneCycleLR(config, last_epoch=last_batch_idx)
else:
print("* Checkpoint not found")
if not self.device == "cpu":
self.scaler = torch.cuda.amp.GradScaler()
# Logging
if self.device == 0 or not self.world_size:
now = datetime.datetime.now()
path = os.path.join(config["log_dir"], now.strftime("%Y:%m:%d_%H:%M:%S"))
self.checkpoint_path = os.path.join(self.checkpoint_dir, now.strftime("%Y:%m:%d_%H:%M:%S"))
self.last_epoch_path = os.path.join(self.checkpoint_dir, "last_epoch.txt")
self.train_writer = SummaryWriter(os.path.join(path, "train"))
self.val_writer = SummaryWriter(os.path.join(path, "val"))
with open(f"{path}/hparams.yml", "w") as f:
yaml.dump(config, f, default_flow_style=False)
def train(self):
best_loss = None
# Training
for epoch in range(self.start_epoch, self.epochs):
self.train_step(epoch)
if self.world_size:
dist.barrier()
loss = self.val_step(epoch)
if self.world_size:
dist.barrier()
print(f'Finished epoch {epoch}, rank {self.device}/{self.world_size}')
if self.device == 0 or not self.world_size:
self.save_checkpoint(self.checkpoint_dir, postfix="last")
print("=> Checkpoint updated")
if best_loss is None:
best_loss = loss
elif loss < best_loss:
self.save_checkpoint(self.checkpoint_dir, postfix="best")
best_loss = loss
if epoch == self.epochs - 1:
self.copy_checkpoints()
else:
with open(self.last_epoch_path, "w") as f:
f.write(str(epoch))
if self.world_size:
dist.barrier()
def train_step(self, step):
self.model.train()
loop = tqdm(self.train_loader)
losses = 0
num_batches = 0
for batch_idx, (specs, transcripts, input_lengths, label_length) in enumerate(loop):
clear_output(wait=True)
loop.set_description(f"Device: {self.device}. Epoch {step} (train)")
self.optimizer.zero_grad()
specs = specs.to(self.device)
transcripts = transcripts.to(self.device)
input_lengths = input_lengths.to(self.device)
label_length = label_length.to(self.device)
if not self.device == "cpu":
with torch.cuda.amp.autocast():
output = self.model(specs)
output = output.permute(2, 0, 1)
output = F.log_softmax(output, dim=2)
loss = self.criterion(output, transcripts, input_lengths, label_length)
losses += loss
self.scaler.scale(loss).backward()
self.scaler.step(self.optimizer)
self.scaler.update()
else:
output = self.model(specs)
output = output.permute(2, 0, 1)
output = F.log_softmax(output, dim=2)
loss = self.criterion(output, transcripts, input_lengths, label_length)
losses += loss
loss.backward()
self.optimizer.step()
if self.use_onecyclelr:
self.scheduler.step()
loop.set_postfix(loss=loss.item())
num_batches += 1
if self.device == 0 or not self.world_size:
self.train_writer.add_scalar(f"Epoch {step}: loss", loss, global_step=batch_idx)
for param_group in self.optimizer.param_groups:
rate = param_group["lr"]
self.train_writer.add_scalar("Learning Rate", rate, global_step=batch_idx + len(self.train_loader) * (step - 1))
if batch_idx % 100 == 0:
rand_idx = random.randint(0, specs.shape[0] - 1)
self.train_writer.add_image(f"Epoch {step} (train): augmented specs", save_spec(specs[rand_idx].to("cpu").detach()), global_step=batch_idx)
if self.device == 0 or not self.world_size:
loss = losses / num_batches
self.train_writer.add_scalar("CTC loss", loss, global_step=step)
def val_step(self, step):
self.model.eval()
loop = tqdm(self.val_loader)
losses = 0
wers = 0
num_batches = 0
with torch.no_grad():
for batch_idx, (specs, transcripts, input_lengths, label_length) in enumerate(loop):
clear_output(wait=True)
loop.set_description(f"Device: {self.device}. Epoch {step} (val)")
specs = specs.to(self.device)
transcripts = transcripts.to(self.device)
input_lengths = input_lengths.to(self.device)
label_length = label_length.to(self.device)
if not self.device == "cpu":
with torch.cuda.amp.autocast():
output = self.model(specs)
output = output.permute(2, 0, 1)
output = F.log_softmax(output, dim=2)
loss = self.criterion(output, transcripts, input_lengths, label_length)
else:
output = self.model(specs)
output = output.permute(2, 0, 1)
output = F.log_softmax(output, dim=2)
loss = self.criterion(output, transcripts, input_lengths, label_length)
losses += loss
loop.set_postfix(loss=loss.item())
num_batches += 1
if self.device == 0 or not self.world_size:
decoded_preds, decoded_targets = self.processor.decode(output.permute(1, 0, 2), transcripts, label_length)
error = wer(decoded_targets, decoded_preds)
wers += error
# Save training logs to Tensorboard
rand_idx = random.randint(0, specs.shape[0] - 1)
self.val_writer.add_text(f"Epoch {step} (val): preds", decoded_preds[rand_idx], global_step=batch_idx)
self.val_writer.add_text(f"Epoch {step} (val): targets", decoded_targets[rand_idx], global_step=batch_idx)
self.val_writer.add_scalar(f"Epoch {step}: loss", loss, global_step=batch_idx)
loss = losses / num_batches
error = wers / num_batches
if self.device == 0 or not self.world_size:
self.val_writer.add_scalar("CTC loss", loss, global_step=step)
self.val_writer.add_scalar("WER", error, global_step=step)
return loss
def oneCycleLR(self, hparams, last_epoch=-1):
scheduler = optim.lr_scheduler.OneCycleLR(
self.optimizer,
max_lr=float(hparams["max_lr"]),
steps_per_epoch=len(self.train_loader),
epochs=int(hparams["epochs"]),
div_factor=float(hparams["div_factor"]),
pct_start=float(hparams["pct_start"]),
last_epoch=last_epoch
)
return scheduler
def loader(self, dataset):
if self.world_size:
sampler = DistributedSampler(dataset, rank=self.device, num_replicas=self.world_size)
loader = DataLoader(dataset, batch_size=self.batch_size, sampler=sampler, collate_fn=custom_collate)
else:
loader = DataLoader(dataset, batch_size=self.batch_size, collate_fn=custom_collate, num_workers=self.num_workers)
return loader
def save_checkpoint(self, path, postfix=""):
if not os.path.exists(path):
os.mkdir(path)
if self.world_size:
torch.save(self.model.module.state_dict(), os.path.join(path, f"model_{postfix}.pt"))
else:
torch.save(self.model.state_dict(), os.path.join(path, f"model_{postfix}.pt"))
torch.save(self.optimizer.state_dict(), os.path.join(path, f"optimizer_{postfix}.pt"))
def load_checkpoint(self, path, map_location):
if self.world_size:
self.model.module.load_state_dict(torch.load(os.path.join(path, "model_last.pt"), map_location=map_location))
else:
self.model.load_state_dict(torch.load(os.path.join(path, "model_last.pt"), map_location=map_location))
self.optimizer.load_state_dict(torch.load(os.path.join(path, "optimizer_last.pt"), map_location=map_location))
def copy_checkpoints(self):
if not os.path.exists(self.checkpoint_path):
os.mkdir(self.checkpoint_path)
shutil.copyfile(os.path.join(self.checkpoint_dir, "model_last.pt"), os.path.join(self.checkpoint_path, "model_last.pt"))
shutil.copyfile(os.path.join(self.checkpoint_dir, "model_best.pt"), os.path.join(self.checkpoint_path, "model_best.pt"))
shutil.copyfile(os.path.join(self.checkpoint_dir, "optimizer_last.pt"), os.path.join(self.checkpoint_path, "optimizer_last.pt"))
shutil.copyfile(os.path.join(self.checkpoint_dir, "optimizer_best.pt"), os.path.join(self.checkpoint_path, "optimizer_best.pt"))
def init_process(rank, size, backend="nccl"):
""" Initialize the distributed environment. """
os.environ['MASTER_ADDR'] = '127.0.0.1'
os.environ['MASTER_PORT'] = '29500'
dist.init_process_group(backend, rank=rank, world_size=size)
def train_dist(rank, world_size, config, from_checkpoint):
init_process(rank, world_size)
print(f"Rank {rank}/{world_size} training process initialized.\n")
trainer = Trainer(config, rank, world_size, from_checkpoint)
dist.barrier()
print(f"Rank {rank}/{world_size} initialised trainer.\n")
trainer.train()
def main():
parser = ArgumentParser()
parser.add_argument('--conf', default="config.yml", help='Path to the configuration file')
parser.add_argument('--from_checkpoint', action="store_true", help='Continue training from the last checkpoint')
args = parser.parse_args()
config = yaml.safe_load(open(args.conf))
from_checkpoint = args.from_checkpoint
world_size = torch.cuda.device_count()
if world_size > 1:
mp.spawn(train_dist,
args=(world_size, config, from_checkpoint),
nprocs=world_size,
join=True)
else:
device = "cuda" if torch.cuda.is_available() else "cpu"
trainer = Trainer(config, rank=device, world_size=None, from_checkpoint=from_checkpoint)
print("=> Initialised trainer")
print("=> Training...")
trainer.train()
if __name__ == "__main__":
main()