-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathedge_detection.py
271 lines (221 loc) · 10.5 KB
/
edge_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
# Normal library imports
import cv2
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import os
# importing requisite information from create_data.py
# 1. show_images(): to display the images so it may be verified if Canny Edge detection worked fine
# 2. grey_images: which is a
from create_data import show_images, gray_images, test_images
def detect_edges(image, low_threshold=50, high_threshold=200):
# Applies the Canny Edge detection algorithm
# Refer: https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_canny/py_canny.html
# Thresholds are hyper-parameters chosen such that:
# 1. Shorter than requried lines are not chosen
# 2. Longer lines such that path etc. are also not chosen and are not mistaken for parking spot
return cv2.Canny(image, low_threshold, high_threshold)
edge_images = list(map(lambda image: detect_edges(image), gray_images)) # creating a map and applying the Canny edge detection
# Uncomment the line to display the image, for testing purposes
show_images(edge_images)
###############################################################################################################################
def filter_region(image, vertices):
# The entire image is not required for the training. So we simply remove parts of the image not required/containing paths the network can
# confuse for some parking spot
mask = np.zeros_like(image) # np.zeros_like() creates a matrix of 0s of the same size as the image. Applying the mask on the image
# enables it to multiply the pixel value with 0 (rendering it black)
if len(mask.shape)==2: # No extra channel dimension:
cv2.fillPoly(mask, vertices, 255) # Simply fill the image with BLACK
else:
cv2.fillPoly(mask, vertices, (255,)*mask.shape[2]) # in case, the input image has a channel dimension
# Handle the color dimension equally well
return cv2.bitwise_and(image, mask) # Bitwise_and simply does a 0 whenever the mask has a zero value. So the non-required area is chopped off
def select_region(image):
# The Region of Interest is defined a polygon of user defined number of vertices
# FUTURE UPDATE: include a method to let users dynamically define this region of interest
rows, cols = image.shape[:2]
pt_1 = [cols*0.05, rows*0.90]
pt_2 = [cols*0.05, rows*0.70]
pt_3 = [cols*0.30, rows*0.55]
pt_4 = [cols*0.6, rows*0.15]
pt_5 = [cols*0.90, rows*0.15]
pt_6 = [cols*0.90, rows*0.90]
# the vertices are an array of polygons (i.e array of arrays) and the data type must be integer
vertices = np.array([[pt_1, pt_2, pt_3, pt_4, pt_5, pt_6]], dtype=np.int32)
return filter_region(image, vertices)
# images showing the region of interest only
roi_images = list(map(select_region, edge_images))
# Uncomment this line to test for the region of interest detection
show_images(roi_images)
#######################################################################################################
def hough_lines(image):
# This function applies the Hough Line Transform to the Canny Edge detected image (along with ROI implemented)
return cv2.HoughLinesP(image, rho=0.1, theta=np.pi/10, threshold=15, minLineLength=9, maxLineGap=4)
def draw_lines(image, lines, color=[255, 0, 0], thickness=2, make_copy=True):
# the lines returned by cv2.HoughLinesP has the shape (-1, 1, 4)
if make_copy:
image = np.copy(image) # don't want to modify the original
cleaned = []
for line in lines:
for x1,y1,x2,y2 in line:
if abs(y2-y1) <=1 and abs(x2-x1) >=25 and abs(x2-x1) <= 55:
cleaned.append((x1,y1,x2,y2))
cv2.line(image, (x1, y1), (x2, y2), color, thickness)
print(" No lines detected: ", len(cleaned))
return image
list_of_lines = list(map(hough_lines, roi_images))
line_images = []
for image, lines in zip(test_images, list_of_lines):
line_images.append(draw_lines(image, lines))
show_images(line_images)
#################################
#######################################################################################################
def identify_blocks(image, lines, make_copy=True):
if make_copy:
new_image = np.copy(image)
#Step 1: Create a clean list of lines
cleaned = []
for line in lines:
for x1,y1,x2,y2 in line:
if abs(y2-y1) <=1 and abs(x2-x1) >=25 and abs(x2-x1) <= 55:
cleaned.append((x1,y1,x2,y2))
#Step 2: Sort cleaned by x1 position
import operator
list1 = sorted(cleaned, key=operator.itemgetter(0, 1))
#Step 3: Find clusters of x1 close together - clust_dist apart
clusters = {}
dIndex = 0
clus_dist = 10
for i in range(len(list1) - 1):
distance = abs(list1[i+1][0] - list1[i][0])
# print(distance)
if distance <= clus_dist:
if not dIndex in clusters.keys(): clusters[dIndex] = []
clusters[dIndex].append(list1[i])
clusters[dIndex].append(list1[i + 1])
else:
dIndex += 1
#Step 4: Identify coordinates of rectangle around this cluster
rects = {}
i = 0
for key in clusters:
all_list = clusters[key]
cleaned = list(set(all_list))
if len(cleaned) > 5:
cleaned = sorted(cleaned, key=lambda tup: tup[1])
avg_y1 = cleaned[0][1]
avg_y2 = cleaned[-1][1]
# print(avg_y1, avg_y2)
avg_x1 = 0
avg_x2 = 0
for tup in cleaned:
avg_x1 += tup[0]
avg_x2 += tup[2]
avg_x1 = avg_x1/len(cleaned)
avg_x2 = avg_x2/len(cleaned)
rects[i] = (avg_x1, avg_y1, avg_x2, avg_y2)
i += 1
print("Num Parking Lanes: ", len(rects))
#Step 5: Draw the rectangles on the image
buff = 7
for key in rects:
tup_topLeft = (int(rects[key][0] - buff), int(rects[key][1]))
tup_botRight = (int(rects[key][2] + buff), int(rects[key][3]))
# print(tup_topLeft, tup_botRight)
cv2.rectangle(new_image, tup_topLeft,tup_botRight,(0,255,0),3)
return new_image, rects
# images showing the region of interest only
rect_images = []
rect_coords = []
for image, lines in zip(test_images, list_of_lines):
new_image, rects = identify_blocks(image, lines)
rect_images.append(new_image)
rect_coords.append(rects)
show_images(rect_images)
#######################################################################################################
def draw_parking(image, rects, make_copy = True, color=[255, 0, 0], thickness=2, save = True):
if make_copy:
new_image = np.copy(image)
gap = 15.5
spot_dict = {} # maps each parking ID to its coords
tot_spots = 0
adj_y1 = {0: 20, 1:-10, 2:0, 3:-11, 4:28, 5:5, 6:-15, 7:-15, 8:-10, 9:-30, 10:9, 11:-32}
adj_y2 = {0: 30, 1: 50, 2:15, 3:10, 4:-15, 5:15, 6:15, 7:-20, 8:15, 9:15, 10:0, 11:30}
adj_x1 = {0: -8, 1:-15, 2:-15, 3:-15, 4:-15, 5:-15, 6:-15, 7:-15, 8:-10, 9:-10, 10:-10, 11:0}
adj_x2 = {0: 0, 1: 15, 2:15, 3:15, 4:15, 5:15, 6:15, 7:15, 8:10, 9:10, 10:10, 11:0}
for key in rects:
# Horizontal lines
tup = rects[key]
x1 = int(tup[0]+ adj_x1[key])
x2 = int(tup[2]+ adj_x2[key])
y1 = int(tup[1] + adj_y1[key])
y2 = int(tup[3] + adj_y2[key])
cv2.rectangle(new_image, (x1, y1),(x2,y2),(0,255,0),2)
num_splits = int(abs(y2-y1)//gap)
for i in range(0, num_splits+1):
y = int(y1 + i*gap)
cv2.line(new_image, (x1, y), (x2, y), color, thickness)
if key > 0 and key < len(rects) -1 :
#draw vertical lines
x = int((x1 + x2)/2)
cv2.line(new_image, (x, y1), (x, y2), color, thickness)
# Add up spots in this lane
if key == 0 or key == (len(rects) -1):
tot_spots += num_splits +1
else:
tot_spots += 2*(num_splits +1)
# Dictionary of spot positions
if key == 0 or key == (len(rects) -1):
for i in range(0, num_splits+1):
cur_len = len(spot_dict)
y = int(y1 + i*gap)
spot_dict[(x1, y, x2, y+gap)] = cur_len +1
else:
for i in range(0, num_splits+1):
cur_len = len(spot_dict)
y = int(y1 + i*gap)
x = int((x1 + x2)/2)
spot_dict[(x1, y, x, y+gap)] = cur_len +1
spot_dict[(x, y, x2, y+gap)] = cur_len +2
print("total parking spaces: ", tot_spots, cur_len)
if save:
filename = 'with_parking.jpg'
cv2.imwrite(filename, new_image)
return new_image, spot_dict
delineated = []
spot_pos = []
for image, rects in zip(test_images, rect_coords):
new_image, spot_dict = draw_parking(image, rects)
delineated.append(new_image)
spot_pos.append(spot_dict)
show_images(delineated)
#######################################################################################################
final_spot_dict = spot_pos[1]
def assign_spots_map(image, spot_dict=final_spot_dict, make_copy = True, color=[255, 0, 0], thickness=2):
if make_copy:
new_image = np.copy(image)
for spot in spot_dict.keys():
(x1, y1, x2, y2) = spot
cv2.rectangle(new_image, (int(x1),int(y1)), (int(x2),int(y2)), color, thickness)
return new_image
marked_spot_images = list(map(assign_spots_map, test_images))
show_images(marked_spot_images)
#######################################################################################################
import pickle
with open('spot_dict.pickle', 'wb') as handle:
pickle.dump(final_spot_dict, handle, protocol=pickle.HIGHEST_PROTOCOL)
#######################################################################################################
def save_images_for_cnn(image, folder_name, spot_dict = final_spot_dict):
for spot in spot_dict.keys():
(x1, y1, x2, y2) = spot
(x1, y1, x2, y2) = (int(x1), int(y1), int(x2), int(y2))
#crop this image
# print(image.shape)
spot_img = image[y1:y2, x1:x2]
spot_img = cv2.resize(spot_img, (0,0), fx=2.0, fy=2.0)
spot_id = spot_dict[spot]
filename = 'spot' + str(spot_id) +'.jpg'
print(spot_img.shape, filename, (x1,x2,y1,y2))
cv2.imwrite(os.path.join(folder_name, filename), spot_img)
save_images_for_cnn(test_images[0], 'cnn\\train_cnn\\')
save_images_for_cnn(test_images[1], 'cnn\\test_cnn\\')