-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathVogel'sMethod.m
114 lines (102 loc) · 2.88 KB
/
Vogel'sMethod.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
clc
clear all
close all
tic
%Input
Cost = [2 3 11 7; 1 0 6 1; 5 8 15 9];
Supply = [6; 1; 11];
Demand = [7 5 3 2];
C1 = Cost;
D1 = Demand;
fprintf('Cost matrix for the given inputs is: \n');
disp(Cost)
SumofSD = sum(Supply);
%Check BALANCED/UNBALANCED
if sum(Supply) == sum(Demand)
fprintf('The above Transportation Problem has Balanced Supply and Demand.\n');
else
fprintf('The above Transportation Problem has Unbalanced Supply and Demand.\n');
if sum(Supply) < sum(Demand)
Cost(end + 1, :) = zeros(1, size(Supply, 2));
Supply(end + 1) = sum(Demand) - sum(Supply);
elseif sum(Demand) < sum(Supply)
Cost(:, end + 1) = zeros(1, size(Supply, 2));
Demand(end + 1) = sum(Supply) - sum(Demand);
end
end
D1 = [Demand, SumofSD];
C1 = [Cost, Supply; D1];
fprintf('Balanced Cost Matrix: \n');
disp(C1)
% Vogel's Method
cost = Cost;
X = zeros(size(Cost));
[m, n] = size(Cost);
BFS = m + n - 1;
%Penalty
for i = 1:m * n
Col = sort(Cost, 1);
Row = sort(Cost, 2);
penrow = Row(:, 2) - Row(:, 1);
pencol = Col(2, :) - Col(1, :);
R = max(penrow);
C = max(pencol);
Rmax = find(penrow == max(R, C));
Cmax = find(pencol == max(R, C));
Cr = Cost(Rmax, :); % %Pnealty rows
Cc = Cost(:, Cmax); % %penalty cols
if max(penrow) ~= max(pencol)
if max(penrow) > max(pencol)
[rowind, colind] = find(min(min(Cr)) == Cost(Rmax, :));
row1 = Rmax(rowind);
col1 = colind;
else
[rowind, colind] = find(min(min(Cc)) == Cost(:, Cmax));
row1 = rowind;
col1 = Cmax(colind);
end
x11 = min(Supply(row1), Demand(col1));
[val, ind] = max(x11);
ii = row1(ind);
jj = col1(ind);
else
[rowind1, colind1] = find(min(min(Cr)) == Cost(Rmax, :));
row1 = Rmax(rowind1);
col1 = colind1;
C1 = Cost(row1, col1);
[rowind2, colind2] = find(min(min(Cc)) == Cost(:, Cmax));
row2 = rowind2;
col2 = Cmax(colind2);
C2 = Cost(row2, col2);
if C1 < C2
x11 = min(Supply(row1), Demand(col1));
[val, ind] = max(x11);
ii = row1(ind);
jj = col1(ind);
else
x11 = min(Supply(row2), Demand(col2));
[val, ind] = max(x11);
ii = row2(ind);
jj = col2(ind);
end
end
y11 = min(Supply(ii), Demand(jj));
X(ii, jj) = y11;
Supply(ii) = Supply(ii) - y11;
Demand(jj) = Demand(jj) - y11;
Cost(ii, jj) = inf;
end
%Printing BFS
fprintf('Initial BFS = \n');
IB = array2table(X);
disp(IB);
totalBFS = length(nonzeros(X))
if totalBFS == BFS
fprintf('The Initial BFS is non-degenerate \n');
else
fprint('The Initial BFS is degenerate \n');
end
initialCost = sum(sum(cost .* X)) - 1;
fprintf('Initial BFS Cost = %d\n', initialCost);
Elapsed_time = toc
disp("Ishan Gupta-19BCE7467")