forked from bshoshany/thread-pool
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy paththread_pool_test.cpp
1112 lines (1014 loc) · 40.2 KB
/
thread_pool_test.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Get rid of annoying MSVC warning.
#ifdef _MSC_VER
#define _CRT_SECURE_NO_WARNINGS
#endif
#include <fstream>
#include <iomanip>
#include <random>
#include <string>
#include <vector>
#include "thread_pool.hpp"
// Define short names for commonly-used integer types.
typedef std::int_fast32_t i32;
typedef std::uint_fast32_t ui32;
typedef std::int_fast64_t i64;
typedef std::uint_fast64_t ui64;
// Define two global synced_streams objects: one prints to std::cout and the other to a file.
synced_stream sync_cout(std::cout);
std::ofstream log_file;
synced_stream sync_file(log_file);
// A global thread pool object.
thread_pool pool;
// A global random_device object used to seed some random number generators.
std::random_device rd;
// Global variables to measure how many checks succeeded and how many failed.
ui32 tests_succeeded = 0;
ui32 tests_failed = 0;
/**
* @brief Print any number of items into both std::cout and the log file, syncing both independently.
*
* @tparam T The types of the items.
* @param items The items to print.
*/
template <typename... T>
void dual_print(const T &...items)
{
sync_cout.print(items...);
sync_file.print(items...);
}
/**
* @brief Print any number of items into both std::cout and the log file, followed by a newline character, syncing both independently.
*
* @tparam T The types of the items.
* @param items The items to print.
*/
template <typename... T>
void dual_println(const T &...items)
{
dual_print(items..., '\n');
}
/**
* @brief Print a stylized header.
*
* @param text The text of the header. Will appear between two lines.
* @param symbol The symbol to use for the lines. Default is '='.
*/
void print_header(const std::string &text, const char &symbol = '=')
{
dual_println();
dual_println(std::string(text.length(), symbol));
dual_println(text);
dual_println(std::string(text.length(), symbol));
}
/**
* @brief Get a string representing the current time.
*
* @return The string.
*/
std::string get_time()
{
const std::time_t t = std::time(nullptr);
char time_string[32];
std::strftime(time_string, sizeof(time_string), "%Y-%m-%d_%H.%M.%S", std::localtime(&t));
return std::string(time_string);
}
/**
* @brief Check if a condition is met, report the result, and count the number of successes and failures.
*
* @param condition The condition to check.
*/
void check(const bool condition)
{
if (condition)
{
dual_println("-> PASSED!");
tests_succeeded++;
}
else
{
dual_println("-> FAILED!");
tests_failed++;
}
}
/**
* @brief Store the ID of the current thread in memory. Waits for a short time to ensure it does not get evaluated by more than one thread.
*
* @param location A pointer to the location where the thread ID should be stored.
*/
void store_ID(std::thread::id *location)
{
*location = std::this_thread::get_id();
std::this_thread::sleep_for(std::chrono::milliseconds(10));
}
/**
* @brief Count the number of unique threads in the thread pool to ensure that the correct number of individual threads was created. Pushes a number of tasks equal to four times the thread count into the thread pool, and count the number of unique thread IDs returned by the tasks.
*/
ui32 count_unique_threads()
{
std::vector<std::thread::id> thread_IDs(pool.get_thread_count() * 4);
for (std::thread::id &id : thread_IDs)
pool.push_task(store_ID, &id);
pool.wait_for_tasks();
std::sort(thread_IDs.begin(), thread_IDs.end());
ui32 unique_threads = (ui32)(std::unique(thread_IDs.begin(), thread_IDs.end()) - thread_IDs.begin());
return unique_threads;
}
/**
* @brief Check that the constructor works.
*/
void check_constructor()
{
dual_println("Checking that the thread pool reports a number of threads equal to the hardware concurrency...");
check(pool.get_thread_count() == std::thread::hardware_concurrency());
dual_println("Checking that the manually counted number of unique thread IDs is equal to the reported number of threads...");
check(pool.get_thread_count() == count_unique_threads());
}
/**
* @brief Check that reset() works.
*/
void check_reset()
{
pool.reset(std::thread::hardware_concurrency() / 2);
dual_println("Checking that after reset() the thread pool reports a number of threads equal to half the hardware concurrency...");
check(pool.get_thread_count() == std::thread::hardware_concurrency() / 2);
dual_println("Checking that after reset() the manually counted number of unique thread IDs is equal to the reported number of threads...");
check(pool.get_thread_count() == count_unique_threads());
pool.reset(std::thread::hardware_concurrency());
dual_println("Checking that after a second reset() the thread pool reports a number of threads equal to the hardware concurrency...");
check(pool.get_thread_count() == std::thread::hardware_concurrency());
dual_println("Checking that after a second reset() the manually counted number of unique thread IDs is equal to the reported number of threads...");
check(pool.get_thread_count() == count_unique_threads());
}
/**
* @brief Check that push_task() works.
*/
void check_push_task()
{
dual_println("Checking that push_task() works for a function with no arguments or return value...");
{
bool flag = false;
pool.push_task([&flag]
{ flag = true; });
pool.wait_for_tasks();
check(flag);
}
dual_println("Checking that push_task() works for a function with one argument and no return value...");
{
bool flag = false;
pool.push_task([](bool *flag)
{ *flag = true; },
&flag);
pool.wait_for_tasks();
check(flag);
}
dual_println("Checking that push_task() works for a function with two arguments and no return value...");
{
bool flag1 = false;
bool flag2 = false;
pool.push_task([](bool *flag1, bool *flag2)
{ *flag1 = *flag2 = true; },
&flag1, &flag2);
pool.wait_for_tasks();
check(flag1 && flag2);
}
}
/**
* @brief Check that submit() works.
*/
void check_submit()
{
dual_println("Checking that submit() works for a function with no arguments or return value...");
{
bool flag = false;
auto my_future = pool.submit([&flag]
{ flag = true; });
check(my_future.get() && flag);
}
dual_println("Checking that submit() works for a function with one argument and no return value...");
{
bool flag = false;
auto my_future = pool.submit([](bool *flag)
{ *flag = true; },
&flag);
check(my_future.get() && flag);
}
dual_println("Checking that submit() works for a function with two arguments and no return value...");
{
bool flag1 = false;
bool flag2 = false;
auto my_future = pool.submit([](bool *flag1, bool *flag2)
{ *flag1 = *flag2 = true; },
&flag1, &flag2);
check(my_future.get() && flag1 && flag2);
}
dual_println("Checking that submit() works for a function with no arguments and a return value...");
{
bool flag = false;
auto my_future = pool.submit([&flag]
{
flag = true;
return 42;
});
check(my_future.get() == 42 && flag);
}
dual_println("Checking that submit() works for a function with one argument and a return value...");
{
bool flag = false;
auto my_future = pool.submit([](bool *flag)
{
*flag = true;
return 42;
},
&flag);
check(my_future.get() == 42 && flag);
}
dual_println("Checking that submit() works for a function with two arguments and a return value...");
{
bool flag1 = false;
bool flag2 = false;
auto my_future = pool.submit([](bool *flag1, bool *flag2)
{
*flag1 = *flag2 = true;
return 42;
},
&flag1, &flag2);
check(my_future.get() == 42 && flag1 && flag2);
}
}
/**
* @brief Check that wait_for_tasks() works.
*/
void check_wait_for_tasks()
{
ui32 n = pool.get_thread_count() * 10;
std::vector<std::atomic<bool>> flags(n);
for (ui32 i = 0; i < n; i++)
pool.push_task([&flags, i]
{
std::this_thread::sleep_for(std::chrono::milliseconds(10));
flags[i] = true;
});
pool.wait_for_tasks();
bool all_flags = true;
for (ui32 i = 0; i < n; i++)
all_flags = all_flags && flags[i];
check(all_flags);
}
/**
* @brief Check that parallelize_loop() works for a specific number of indices split over a specific number of tasks.
*
* @param start The first index in the loop.
* @param end The last index in the loop plus 1.
* @param num_tasks The number of tasks.
*/
void check_parallelize_loop(i32 start, i32 end, const ui32 &num_tasks)
{
if (start == end)
end++;
dual_println("Verifying that a loop from ", start, " to ", end, " with ", num_tasks, num_tasks == 1 ? " task" : " tasks", " modifies all indices...");
ui64 num_indices = (ui64)std::abs(end - start);
i32 offset = std::min(start, end);
std::vector<std::atomic<bool>> flags((ui64)num_indices);
pool.parallelize_loop(
start, end, [&flags, &offset](const i32 &start, const i32 &end)
{
for (i32 i = start; i < end; i++)
flags[(ui64)(i - offset)] = true;
},
num_tasks);
bool all_flags = true;
for (ui64 i = 0; i < num_indices; i++)
all_flags = all_flags && flags[i];
check(all_flags);
}
/**
* @brief Check that parallelize_loop() works using several different random values for the range of indices and number of tasks.
*/
void check_parallelize_loop()
{
std::mt19937_64 mt(rd());
std::uniform_int_distribution<i32> index_dist((i32)pool.get_thread_count() * -100, (i32)pool.get_thread_count() * 100);
std::uniform_int_distribution<ui32> task_dist(1, pool.get_thread_count());
for (ui32 i = 0; i < 10; i++)
check_parallelize_loop(index_dist(mt), index_dist(mt), task_dist(mt));
}
/**
* @brief Check that sleep_duration works for a specific value.
*
* @param duration The value of sleep_duration.
*/
void check_sleep_duration(const ui32 &duration)
{
dual_println("Submitting tasks with sleep_duration = ", duration, " microseconds...");
pool.sleep_duration = duration;
ui32 n = pool.get_thread_count() * 100;
std::vector<std::atomic<bool>> flags(n);
for (ui32 i = 0; i < n; i++)
pool.push_task([&flags, i]
{ flags[i] = true; });
pool.wait_for_tasks();
bool all_flags = true;
for (ui32 i = 0; i < n; i++)
all_flags = all_flags && flags[i];
check(all_flags);
}
/**
* @brief Check that sleep_duration works for several different random values.
*/
void check_sleep_duration()
{
ui32 old_duration = pool.sleep_duration;
check_sleep_duration(0);
std::mt19937_64 mt(rd());
std::uniform_int_distribution<ui32> dist(1, 2000);
for (ui32 i = 0; i < 5; i++)
check_sleep_duration(dist(mt));
dual_println("Resetting sleep_duration to the default value (", old_duration, " microseconds).");
pool.sleep_duration = old_duration;
}
/**
* @brief Check that task monitoring works.
*/
void check_task_monitoring()
{
ui32 n = std::min<ui32>(std::thread::hardware_concurrency(), 4);
dual_println("Resetting pool to ", n, " threads.");
pool.reset(n);
dual_println("Submitting ", n * 3, " tasks.");
std::vector<std::atomic<bool>> release(n * 3);
for (ui32 i = 0; i < n * 3; i++)
pool.push_task([&release, i]
{
while (!release[i])
std::this_thread::yield();
dual_println("Task ", i, " released.");
});
std::this_thread::sleep_for(std::chrono::milliseconds(300));
dual_println("After submission, should have: ", n * 3, " tasks total, ", n, " tasks running, ", n * 2, " tasks queued...");
check(pool.get_tasks_total() == n * 3 && pool.get_tasks_running() == n && pool.get_tasks_queued() == n * 2);
for (ui32 i = 0; i < n; i++)
release[i] = true;
std::this_thread::sleep_for(std::chrono::milliseconds(300));
dual_println("After releasing ", n, " tasks, should have: ", n * 2, " tasks total, ", n, " tasks running, ", n, " tasks queued...");
for (ui32 i = n; i < n * 2; i++)
release[i] = true;
check(pool.get_tasks_total() == n * 2 && pool.get_tasks_running() == n && pool.get_tasks_queued() == n);
std::this_thread::sleep_for(std::chrono::milliseconds(300));
dual_println("After releasing ", n, " more tasks, should have: ", n, " tasks total, ", n, " tasks running, ", 0, " tasks queued...");
check(pool.get_tasks_total() == n && pool.get_tasks_running() == n && pool.get_tasks_queued() == 0);
for (ui32 i = n * 2; i < n * 3; i++)
release[i] = true;
std::this_thread::sleep_for(std::chrono::milliseconds(200));
dual_println("After releasing the final ", n, " tasks, should have: ", 0, " tasks total, ", 0, " tasks running, ", 0, " tasks queued...");
check(pool.get_tasks_total() == 0 && pool.get_tasks_running() == 0 && pool.get_tasks_queued() == 0);
dual_println("Resetting pool to ", std::thread::hardware_concurrency(), " threads.");
pool.reset(std::thread::hardware_concurrency());
}
/**
* @brief Check that pausing works.
*/
void check_pausing()
{
ui32 n = std::min<ui32>(std::thread::hardware_concurrency(), 4);
dual_println("Resetting pool to ", n, " threads.");
pool.reset(n);
dual_println("Pausing pool.");
pool.paused = true;
dual_println("Submitting ", n * 3, " tasks, each one waiting for 200ms.");
for (ui32 i = 0; i < n * 3; i++)
pool.push_task([i]
{
std::this_thread::sleep_for(std::chrono::milliseconds(200));
dual_println("Task ", i, " done.");
});
dual_println("Immediately after submission, should have: ", n * 3, " tasks total, ", 0, " tasks running, ", n * 3, " tasks queued...");
check(pool.get_tasks_total() == n * 3 && pool.get_tasks_running() == 0 && pool.get_tasks_queued() == n * 3);
std::this_thread::sleep_for(std::chrono::milliseconds(300));
dual_println("300ms later, should still have: ", n * 3, " tasks total, ", 0, " tasks running, ", n * 3, " tasks queued...");
check(pool.get_tasks_total() == n * 3 && pool.get_tasks_running() == 0 && pool.get_tasks_queued() == n * 3);
dual_println("Unpausing pool.");
pool.paused = false;
std::this_thread::sleep_for(std::chrono::milliseconds(300));
dual_println("300ms later, should have: ", n * 2, " tasks total, ", n, " tasks running, ", n, " tasks queued...");
check(pool.get_tasks_total() == n * 2 && pool.get_tasks_running() == n && pool.get_tasks_queued() == n);
dual_println("Pausing pool and using wait_for_tasks() to wait for the running tasks.");
pool.paused = true;
pool.wait_for_tasks();
dual_println("After waiting, should have: ", n, " tasks total, ", 0, " tasks running, ", n, " tasks queued...");
check(pool.get_tasks_total() == n && pool.get_tasks_running() == 0 && pool.get_tasks_queued() == n);
std::this_thread::sleep_for(std::chrono::milliseconds(200));
dual_println("200ms later, should still have: ", n, " tasks total, ", 0, " tasks running, ", n, " tasks queued...");
check(pool.get_tasks_total() == n && pool.get_tasks_running() == 0 && pool.get_tasks_queued() == n);
dual_println("Unpausing pool and using wait_for_tasks() to wait for all tasks.");
pool.paused = false;
pool.wait_for_tasks();
dual_println("After waiting, should have: ", 0, " tasks total, ", 0, " tasks running, ", 0, " tasks queued...");
check(pool.get_tasks_total() == 0 && pool.get_tasks_running() == 0 && pool.get_tasks_queued() == 0);
dual_println("Resetting pool to ", std::thread::hardware_concurrency(), " threads.");
pool.reset(std::thread::hardware_concurrency());
}
/**
* @brief Check that exception handling work.
*/
void check_exceptions()
{
bool caught = false;
auto my_future = pool.submit([]
{ throw std::runtime_error("Exception thrown!"); });
try
{
my_future.get();
}
catch (const std::exception &e)
{
if (e.what() == std::string("Exception thrown!"))
caught = true;
}
check(caught);
}
/**
* @brief A lightweight matrix class template for performance testing purposes. Not for general use; only contains the bare minimum functionality needed for the test. Based on https://github.com/bshoshany/multithreaded-matrix
*
* @tparam T The type to use for the matrix elements.
*/
template <typename T>
class matrix
{
public:
// =====================================
// Constructors and assignment operators
// =====================================
/**
* @brief Construct an uninitialized matrix.
*
* @param _rows The number of rows.
* @param _cols The number of columns.
*/
matrix(const ui64 &_rows, const ui64 &_cols)
: rows(_rows), cols(_cols), smart_elements(new T[rows * cols])
{
elements = smart_elements.get();
}
/**
* @brief Construct a new matrix by copying the elements of an existing matrix.
*
* @param m The matrix to be copied.
*/
matrix(const matrix<T> &m)
: rows(m.rows), cols(m.cols), smart_elements(new T[rows * cols])
{
elements = smart_elements.get();
for (ui64 i = 0; i < rows * cols; i++)
elements[i] = m.elements[i];
}
/**
* @brief Construct a new matrix by moving the elements of an existing matrix.
*
* @param m The matrix to be moved.
*/
matrix(matrix<T> &&m)
: rows(m.rows), cols(m.cols), smart_elements(std::move(m.smart_elements))
{
elements = smart_elements.get();
m.rows = 0;
m.cols = 0;
m.elements = nullptr;
}
/**
* @brief Copy the elements of another matrix to this matrix.
*
* @param m The matrix to be copied.
* @return A reference to this matrix.
*/
matrix<T> &operator=(const matrix<T> &m)
{
rows = m.rows;
cols = m.cols;
smart_elements.reset(new T[rows * cols]);
elements = smart_elements.get();
for (ui64 i = 0; i < rows * cols; i++)
elements[i] = m.elements[i];
return *this;
}
/**
* @brief Move the elements of another matrix to this matrix.
*
* @param m The matrix to be moved.
* @return A reference to this matrix.
*/
matrix<T> &operator=(matrix<T> &&m)
{
rows = m.rows;
cols = m.cols;
smart_elements = std::move(m.smart_elements);
elements = smart_elements.get();
m.rows = 0;
m.cols = 0;
m.elements = nullptr;
return *this;
}
// ====================
// Overloaded operators
// ====================
/**
* @brief Read or modify a matrix element.
*
* @param row The row index (starting from zero).
* @param col The column index (starting from zero).
* @return A reference to the element.
*/
inline T &operator()(const ui64 &row, const ui64 &col)
{
return elements[(cols * row) + col];
}
/**
* @brief Read a matrix element.
*
* @param row The row index (starting from zero).
* @param col The column index (starting from zero).
* @return The value of the element.
*/
inline T operator()(const ui64 &row, const ui64 &col) const
{
return elements[(cols * row) + col];
}
/**
* @brief Read or modify an element of the underlying 1-dimensional array.
*
* @param i The element index (starting from zero).
* @return A reference to the element.
*/
inline T &operator[](const ui64 &i)
{
return elements[i];
}
/**
* @brief Read an element of the underlying 1-dimensional array.
*
* @param i The element index (starting from zero).
* @return The value of the element.
*/
inline T operator[](const ui64 &i) const
{
return elements[i];
}
/**
* @brief Compare this matrix to another matrix.
*
* @param m The matrix to compare to.
* @return Whether the matrices have the same elements.
*/
bool operator==(const matrix<T> &m) const
{
bool compare_result = true;
for (ui64 i = 0; i < rows * cols; i++)
compare_result = compare_result && (elements[i] == m.elements[i]);
return compare_result;
}
// =======================
// Public member functions
// =======================
/**
* @brief Transpose a matrix.
*
* @param num_tasks The number of parallel tasks to use. If set to 0, no multithreading will be used.
* @return The transposed matrix.
*/
matrix<T> transpose(const ui32 &num_tasks) const
{
matrix<T> out(cols, rows);
if (num_tasks == 0)
{
for (ui64 i = 0; i < out.rows; i++)
for (ui64 j = 0; j < out.cols; j++)
out(i, j) = operator()(j, i);
}
else
{
pool.parallelize_loop(
0, out.rows, [this, &out](const ui64 &start, const ui64 &end)
{
for (ui64 i = start; i < end; i++)
for (ui64 j = 0; j < out.cols; j++)
out(i, j) = operator()(j, i);
},
num_tasks);
}
return out;
}
// ================
// Friend functions
// ================
/**
* @brief Add two matrices using the specified number of parallel tasks.
*
* @param a The first matrix to be added.
* @param b The second matrix to be added.
* @param num_tasks The number of parallel tasks to use. If set to 0, no multithreading will be used.
* @return The sum of the matrices.
*/
friend matrix<T> add_matrices(const matrix<T> &a, const matrix<T> &b, const ui32 &num_tasks)
{
matrix<T> c(a.rows, a.cols);
if (num_tasks == 0)
for (ui64 i = 0; i < a.rows * a.cols; i++)
c[i] = a[i] + b[i];
else
pool.parallelize_loop(
0, a.rows * a.cols, [&a, &b, &c](const ui64 &start, const ui64 &end)
{
for (ui64 i = start; i < end; i++)
c[i] = a[i] + b[i];
},
num_tasks);
return c;
}
/**
* @brief Multiply two matrices using the specified number of parallel tasks.
*
* @param a The first matrix to be multiplied.
* @param b The second matrix to be multiplied.
* @param num_tasks The number of parallel tasks to use. If set to 0, no multithreading will be used.
* @return The product of the matrices.
*/
friend matrix<T> multiply_matrices(const matrix<T> &a, const matrix<T> &b, const ui32 &num_tasks)
{
matrix<T> c(a.rows, b.cols);
if (num_tasks == 0)
{
for (ui64 i = 0; i < a.rows; i++)
for (ui64 j = 0; j < b.cols; j++)
{
c(i, j) = 0;
for (ui64 k = 0; k < a.cols; k++)
c(i, j) += a(i, k) * b(k, j);
}
}
else
{
pool.parallelize_loop(
0, a.rows, [&a, &b, &c, &a_cols = a.cols, &b_cols = b.cols](const ui64 &start, const ui64 &end)
{
for (ui64 i = start; i < end; i++)
for (ui64 j = 0; j < b_cols; j++)
{
c(i, j) = 0;
for (ui64 k = 0; k < a_cols; k++)
c(i, j) += a(i, k) * b(k, j);
}
},
num_tasks);
}
return c;
}
private:
// ========================
// Private member variables
// ========================
/**
* @brief The number of rows.
*/
ui64 rows = 0;
/**
* @brief The number of columns.
*/
ui64 cols = 0;
/**
* @brief A pointer to an array storing the elements of the matrix in flattened 1-dimensional form.
*/
T *elements = nullptr;
/**
* @brief A smart pointer to manage the memory allocated for the matrix elements.
*/
std::unique_ptr<T[]> smart_elements;
};
/**
* @brief A class template for generating random matrices.
*
* @tparam T The type to use for the matrix elements.
* @tparam D The distribution to use, e.g. std::uniform_real_distribution<double>.
*/
template <typename T, typename D>
class random_matrix_generator
{
public:
// ============
// Constructors
// ============
/**
* @brief Construct a new random matrix generator.
*
* @tparam P The types of the parameters to pass to the constructor of the distribution.
* @param params The parameters to pass to the constructor of the distribution. The number of parameters and their types depends on the particular distribution being used.
*/
template <typename... P>
random_matrix_generator(const P &...params) : dist(params...), rd() {}
// =======================
// Public member functions
// =======================
/**
* @brief Generate a random matrix with the given number of rows and columns.
*
* @param rows The desired number of rows in the matrix.
* @param cols The desired number of columns in the matrix.
* @param num_tasks The number of parallel tasks to use. If set to 0, no multithreading will be used.
* @return The random matrix.
*/
matrix<T> generate_matrix(const ui64 &rows, const ui64 &cols, const ui32 &num_tasks)
{
matrix<T> m(rows, cols);
if (num_tasks == 0)
{
std::mt19937_64 mt(generate_seed());
for (ui64 i = 0; i < rows * cols; i++)
m[i] = dist(mt);
}
else
pool.parallelize_loop(
0, rows * cols, [this, &m](const ui64 &start, const ui64 &end)
{
std::mt19937_64 mt(generate_seed());
for (ui64 i = start; i < end; i++)
m[i] = dist(mt);
},
num_tasks);
return m;
}
private:
// ========================
// Private member functions
// ========================
/**
* @brief Generate a seed. The std::mt19937_64 in each block will be seeded using this function in order to avoid depleting the entropy of the random_device.
*
* @return A random unsigned 64-bit integer.
*/
ui64 generate_seed()
{
static std::mt19937_64 mt(rd());
return mt();
}
// ========================
// Private member variables
// ========================
/**
* @brief The distribution to use for generating random numbers.
*/
D dist;
/**
* @brief The random device to be used for seeding the pseudo-random number generators.
*/
std::random_device rd;
};
/**
* @brief Check the matrix class template by comparing the results of adding, multiplying, and transposing matrices calculated in two ways: single-threaded and multithreaded.
*/
void check_matrix()
{
// Initialize a random_matrix_generator object to generates matrices with integers uniformly distributed between -1000 and 1000.
random_matrix_generator<i64, std::uniform_int_distribution<i64>> rnd(-1000, 1000);
// Define the size of the matrices to use.
const ui32 thread_count = pool.get_thread_count();
const ui64 rows = thread_count * 10;
const ui64 cols = rows;
const ui64 total_size = rows * cols;
dual_println("Using matrices of size ", rows, "x", cols, " with a total of ", total_size, " elements.");
matrix<i64> A = rnd.generate_matrix(rows, cols, thread_count);
matrix<i64> B = rnd.generate_matrix(rows, cols, thread_count);
dual_println("Adding two matrices (single-threaded)...");
matrix<i64> ApB_single = add_matrices(A, B, 0);
dual_println("Adding two matrices (multithreaded)...");
matrix<i64> ApB_multi = add_matrices(A, B, thread_count);
dual_println("Comparing the results...");
check(ApB_single == ApB_multi);
dual_println("Transposing a matrix (single-threaded)...");
matrix<i64> At_single = A.transpose(0);
dual_println("Transposing a matrix (multithreaded)...");
matrix<i64> At_multi = A.transpose(thread_count);
dual_println("Comparing the results...");
check(At_single == At_multi);
dual_println("Multiplying two matrices (single-threaded)...");
matrix<i64> AxB_single = multiply_matrices(A, B, 0);
dual_println("Multiplying two matrices (multithreaded)...");
matrix<i64> AxB_multi = multiply_matrices(A, B, thread_count);
dual_println("Comparing the results...");
check(AxB_single == AxB_multi);
}
/**
* @brief Print the timing of a specific test.
*
* @param num_tasks The number of tasks.
* @param mean_sd std::pair containing the mean as the first member and standard deviation as the second member.
*/
void print_timing(const ui32 &num_tasks, const std::pair<double, double> &mean_sd)
{
if (num_tasks == 1)
dual_print("With 1 task");
else
dual_print("With ", std::setw(3), num_tasks, " tasks");
dual_println(", mean execution time was ", std::setw(6), mean_sd.first, " ms with standard deviation ", std::setw(4), mean_sd.second, " ms.");
}
/**
* @brief Calculate and print the speedup obtained by multithreading.
*
* @param timings A vector of the timings corresponding to different numbers of tasks.
* @return The maximum speedup obtained.
*/
double print_speedup(const std::vector<double> &timings)
{
const auto [min_time, max_time] = std::minmax_element(std::begin(timings), std::end(timings));
double max_speedup = *max_time / *min_time;
dual_println("Maximum speedup obtained: ", max_speedup, "x.");
return max_speedup;
}
/**
* @brief Calculate the mean and standard deviation of a set of integers.
*
* @param timings The integers.
* @return std::pair containing the mean as the first member and standard deviation as the second member.
*/
std::pair<double, double> analyze(const std::vector<i64> &timings)
{
double mean = 0;
for (size_t i = 0; i < timings.size(); i++)
mean += (double)timings[i] / (double)timings.size();
double variance = 0;
for (size_t i = 0; i < timings.size(); i++)
variance += ((double)timings[i] - mean) * ((double)timings[i] - mean) / (double)timings.size();
double sd = std::sqrt(variance);
return std::pair(mean, sd);
}
/**
* @brief Perform a performance test using some matrix operations.
*/
void check_performance()
{
// Set the formatting of floating point numbers.
dual_print(std::fixed, std::setprecision(1));
// Initialize a random_matrix_generator object to generates matrices with real (floating-point) numbers uniformly distributed between -1000 and 1000.
random_matrix_generator<double, std::uniform_real_distribution<double>> rnd(-1000, 1000);
// Initialize a timer object to measure the execution time of various operations.
timer tmr;
// If the CPU has more than 8 threads, we leave 2 threads for the rest of the operating system. Otherwise, performance may suffer.
const ui32 thread_count = pool.get_thread_count() <= 8 ? pool.get_thread_count() : pool.get_thread_count() - 2;
dual_println("Using ", thread_count, " out of ", pool.get_thread_count(), " threads.");
// Define the size of the matrices to use.
const ui64 rows = thread_count * 200;
const ui64 cols = rows;
// The number of tasks to try for each operation.
const ui32 try_tasks[] = {1, thread_count / 4, thread_count / 2, thread_count, thread_count * 2, thread_count * 4};
// Generate two random test matrices to be used for benchmarking addition, transposition, and random matrix generation.
matrix<double> A = rnd.generate_matrix(rows, cols, thread_count);
matrix<double> B = rnd.generate_matrix(rows, cols, thread_count);
// Generate two random test matrices to be used for benchmarking multiplication. Since matrix multiplication is O(n^3), we reduce the size of the test matrices so that this operation completes within a reasonable time.
constexpr ui64 mult_factor = 8;
matrix<double> X = rnd.generate_matrix(rows / mult_factor, cols / mult_factor, thread_count);
matrix<double> Y = rnd.generate_matrix(cols / mult_factor, rows / mult_factor, thread_count);
// Determine the optimal sleep duration for this system.
dual_print("Determining the optimal sleep duration...");
i64 optimal_ms = 0;
ui64 optimal_sleep = 0;
for (ui64 sleep = 0; sleep <= 2000; sleep += 100)
{
dual_print(".");
pool.sleep_duration = (ui32)sleep;
tmr.start();
matrix<double> C = add_matrices(A, B, thread_count);
matrix<double> D = A.transpose(thread_count);
matrix<double> E = multiply_matrices(X, Y, thread_count);
matrix<double> F = rnd.generate_matrix(rows, cols, thread_count);
tmr.stop();
if (tmr.ms() < optimal_ms || optimal_ms == 0)
{
optimal_ms = tmr.ms();
optimal_sleep = sleep;
}
}
if (optimal_sleep == 0)
dual_println("\nResult: Using std::this_thread::yield() instead of std::this_thread::sleep_for() is optimal.");
else
dual_println("\nResult: The optimal sleep duration is ", optimal_sleep, " microseconds.");
pool.sleep_duration = (ui32)optimal_sleep;
// Vectors to store statistics.
std::vector<double> different_n_timings;
std::vector<i64> same_n_timings;
std::vector<double> speedups;
// How many times to run each test.
constexpr ui32 repeat = 20;
dual_println("\nAdding two ", rows, "x", cols, " matrices ", repeat, " times:");
for (ui32 n : try_tasks)
{
for (ui32 i = 0; i < repeat; i++)
{
tmr.start();
matrix<double> C = add_matrices(A, B, n);
tmr.stop();
same_n_timings.push_back(tmr.ms());
}
auto mean_sd = analyze(same_n_timings);
print_timing(n, mean_sd);
different_n_timings.push_back(mean_sd.first);
same_n_timings.clear();
}
speedups.push_back(print_speedup(different_n_timings));
different_n_timings.clear();
dual_println("\nTransposing one ", rows, "x", cols, " matrix ", repeat, " times:");
for (ui32 n : try_tasks)
{
for (ui32 i = 0; i < repeat; i++)
{
tmr.start();
matrix<double> C = A.transpose(n);
tmr.stop();