-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevents_worker.py
187 lines (137 loc) · 5.6 KB
/
events_worker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import time
import json
import base64
import urllib3
import threading
import traceback
from concurrent.futures import ThreadPoolExecutor, as_completed
from kubernetes import client, config, watch
from acc_worker.configs.Environment import get_environment_variables
env = get_environment_variables()
config.load_kube_config_from_dict(
config_dict=json.loads(
base64.b64decode(
env.WKUBE_SECRET_JSON_B64.encode()
)
)
)
# Create Kubernetes API client
v1 = client.CoreV1Api()
# Define API endpoint for sending events
API_ENDPOINT = f'{env.ACCELERATOR_CLI_BASE_URL}/v1/projects/webhook-event/'
if not env.ACCELERATOR_APP_TOKEN:
raise ValueError("env.ACCELERATOR_APP_TOKEN is not set.")
HEADERS = {
'Content-Type': 'application/json',
'x-authorization': env.ACCELERATOR_APP_TOKEN
}
executor = ThreadPoolExecutor(max_workers=10)
retries = urllib3.util.Retry(total=10, backoff_factor=1)
http_client = urllib3.poolmanager.PoolManager(
cert_reqs="CERT_NONE", num_pools=20, retries=retries
)
# Function to send an event to the external API
def send_event(event):
try:
print("Event:")
print(event)
res = http_client.request(
"POST",
API_ENDPOINT,
json={
'type': 'WKUBE_POD_EVENT',
'data': event
},
headers=HEADERS
)
if str(res.status)[0] in ['4', '5'] and res.json():
print(f"\nHttp error while sending events to control server.{res.json()}\n")
except Exception as err:
error_message = ''.join(traceback.format_exc())
print(f"\nError while sending events to control server. \n {error_message} \n")
def extract_event_data(event):
event_object = event['object']
values = dict(
timestamp=event_object.metadata.creation_timestamp.isoformat(),
uid=event_object.metadata.uid
)
for attr in ['reason', 'message']:
if not hasattr(event_object, attr):
print(f"Event object has no attribute {attr}")
else:
values[attr] = getattr(event_object, attr)
if hasattr(event_object, 'involved_object'):
involved_object = getattr(event_object, 'involved_object')
values['kind'] = involved_object.kind
values['involved_object_name'] = involved_object.name
if values['kind'] == 'Pod':
values['task_id'] = involved_object.name.rsplit('-', 1)[0]
elif values['kind'] == 'Job':
values['task_id'] = involved_object.name
else:
print(f"Ignoring the event from kind {values['kind']}")
return values
# Function to process a batch of events
def process_events(events):
if events:
futures = [executor.submit(send_event, extract_event_data(event)) for event in events]
# Function to start a timer to process events if batch size is not reached
def start_batch_timer(events, batch_lock, batch_event, interval=30):
def timer_callback():
try:
with batch_lock:
if batch_event['events']:
process_events(batch_event['events'])
batch_event['events'].clear()
print("Batch processed and cleared via callback \n")
start_batch_timer(events, batch_lock, batch_event, interval)
except Exception as err:
print("\nError while processing callback exception.")
error_message = ''.join(traceback.format_exc())
print(f"{error_message} \n\n")
timer = threading.Timer(interval, timer_callback)
timer.start()
return timer
# Function to watch and process events
def watch_and_process_events():
global timer # Declare the timer variable as global
timer = None
try:
while True:
try:
w = watch.Watch()
event_batch = []
batch_lock = threading.Lock()
batch_event = {'events': event_batch}
timer = start_batch_timer(event_batch, batch_lock, batch_event, interval=30)
for event in w.stream(v1.list_namespaced_event, env.WKUBE_K8_NAMESPACE):
with batch_lock:
event_batch.append(event)
# If batch size reaches threshold, process immediately
if len(event_batch) >= 10: # Adjust batch size as needed
process_events(event_batch)
event_batch.clear()
print("Batch processed and cleared after threshold is reached. \n")
# Restart the timer
timer.cancel()
timer = start_batch_timer(event_batch, batch_lock, batch_event, interval=30)
# Process any remaining events after exiting the loop
with batch_lock:
if event_batch:
process_events(event_batch)
except client.exceptions.ApiException as e:
if e.status == 410:
print("Resource version expired. Reconnecting...")
continue # Restart the watch
else:
print(f"API exception occurred: {e}")
break
except Exception as e:
print(f"An unexpected error occurred: {e}")
break
finally:
# Ensure the timer is cancelled if it's still running
if timer:
timer.cancel()
if __name__ == '__main__':
watch_and_process_events()