forked from ymirsky/Kitsune-py
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAfterImage_extrapolate.pyx
801 lines (688 loc) · 27.8 KB
/
AfterImage_extrapolate.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
import math
import numpy as np
# MIT License
#
# Copyright (c) 2018 Yisroel mirsky
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#compile with: python setup.py build_ext --inplace
import pyximport; pyximport.install()
cdef class incStat:
cdef str ID
cdef double CF1
cdef double CF2
cdef double w
cdef int isTypeDiff
cdef double Lambda
cdef double lastTimestamp
cdef double cur_mean
cdef double cur_var
cdef double cur_std
cdef list covs
def __init__(self, double Lambda, str ID, double init_time=0, int isTypeDiff=False): # timestamp is creation time
self.ID = ID
self.CF1 = 0 # linear sum
self.CF2 = 0 # sum of squares
self.w = 1e-20 # weight
self.isTypeDiff = isTypeDiff
self.Lambda = Lambda # Decay Factor
self.lastTimestamp = init_time
self.cur_mean = np.nan
self.cur_var = np.nan
self.cur_std = np.nan
self.covs = [] # a list of incStat_covs (references) with relate to this incStat
cdef insert(self, double v, double t=0): # v is a scalar, t is v's arrival the timestamp
if self.isTypeDiff:
if t - self.lastTimestamp > 0:
v = t - self.lastTimestamp
else:
v = 0
self.processDecay(t)
# update with v
self.CF1 += v
self.CF2 += math.pow(v, 2)
self.w += 1
self.cur_mean = np.nan # force recalculation if called
self.cur_var = np.nan
self.cur_std = np.nan
# update covs (if any)
cdef incStat_cov cov
for c in self.covs:
cov = c
cov.update_cov(self.ID, v, t)
cdef processDecay(self, double timestamp):
cdef double factor, timeDiff
factor = 1
# check for decay
timeDiff = timestamp - self.lastTimestamp
if timeDiff > 0:
factor = math.pow(2, (-self.Lambda * timeDiff))
self.CF1 = self.CF1 * factor
self.CF2 = self.CF2 * factor
self.w = self.w * factor
self.lastTimestamp = timestamp
return factor
cdef weight(self):
return self.w
cdef mean(self):
if math.isnan(self.cur_mean): # calculate it only once when necessary
self.cur_mean = self.CF1 / self.w
return self.cur_mean
cdef var(self):
if math.isnan(self.cur_var): # calculate it only once when necessary
self.cur_var = abs(self.CF2 / self.w - math.pow(self.mean(), 2))
return self.cur_var
cdef std(self):
if math.isnan(self.cur_std): # calculate it only once when necessary
self.cur_std = math.sqrt(self.var())
return self.cur_std
cdef cov(self,ID2):
for cov in self.covs:
if cov.isRelated(ID2):
return cov.cov()
return [np.nan]
cdef pcc(self,ID2):
for cov in self.covs:
if cov.isRelated(ID2):
return cov.pcc()
return [np.nan]
cdef cov_pcc(self,ID2):
cdef incStat_cov cov
for c in self.covs:
cov = c
if cov.isRelated(ID2):
return cov.get_stats1()
return [np.nan]*2
cdef radius(self, other_incStats): # the radius of a set of incStats
cdef double A
A = self.var()
cdef incStat incSc
for incS in other_incStats:
incSc = incS
A += incSc.var()
return math.sqrt(A)
cdef magnitude(self, other_incStats): # the magnitude of a set of incStats
cdef double A
A = math.pow(self.mean(), 2)
cdef incStat incSc
for incS in other_incStats:
incSc = incS
A += math.pow(incSc.mean(), 2)
return math.sqrt(A)
#calculates and pulls all stats on this stream
cdef allstats_1D(self):
self.cur_mean = self.CF1 / self.w
self.cur_var = abs(self.CF2 / self.w - math.pow(self.cur_mean, 2))
return [self.w, self.cur_mean, self.cur_var]
#calculates and pulls all stats on this stream, and stats shared with the indicated stream
cdef allstats_2D(self, str ID2):
stats1D = self.allstats_1D()
# Find cov component
stats2D = [np.nan] * 4
cdef incStat_cov cov
for c in self.covs:
cov = c
if cov.isRelated(ID2):
stats2D = cov.get_stats2()
break
return stats1D + stats2D
cdef getHeaders_1D(self, suffix=True):
if self.ID is None:
s0=""
else:
s0 = "_0"
if suffix:
s0 = "_"+self.ID
headers = ["weight"+s0, "mean"+s0, "std"+s0]
return headers
cdef getHeaders_2D(self, ID2, suffix=True):
hdrs1D = self.getHeaders_1D(suffix)
if self.ID is None:
s0=""
s1=""
else:
s0 = "_0"
s1 = "_1"
if suffix:
s0 = "_"+self.ID
s1 = "_" + ID2
hdrs2D = ["radius_" + s0 + "_" + s1, "magnitude_" + s0 + "_" + s1, "covariance_" + s0 + "_" + s1,
"pcc_" + s0 + "_" + s1]
return hdrs1D+hdrs2D
# def toJSON(self):
# j = {}
# j['CF1'] = self.CF1
# j['CF2'] = self.CF2
# j['w'] = self.w
# j['isTypeDiff'] = self.isTypeDiff
# j['Lambda'] = self.Lambda
# j['lastTimestamp'] = self.lastTimestamp
# return json.dumps(j)
#
# def loadFromJSON(self,JSONstring):
# j = json.loads(JSONstring)
# self.CF1 = j['CF1']
# self.CF2 = j['CF2']
# self.w = j['w']
# self.isTypeDiff = j['isTypeDiff']
# self.Lambda = j['Lambda']
# self.lastTimestamp = j['lastTimestamp']
#like incStat, but maintains stats between two streams
#TODO: make it possble to call incstat magnitude and raduis withour list of incstsats (just single incstat objects) for cov.getstats2 typcast call
cdef class incStat_cov:
cdef double CF3
cdef double w3
cdef double lastTimestamp_cf3
cdef incStat incS1
cdef incStat incS2
cdef extrapolator ex1
cdef extrapolator ex2
def __init__(self, incStat incS1,incStat incS2, double init_time = 0):
# store references tot he streams' incStats
self.incS1 = incS1
self.incS2 = incS2
# init extrapolators
self.ex1 = extrapolator()
self.ex2 = extrapolator()
# init sum product residuals
self.CF3 = 0 # sum of residule products (A-uA)(B-uB)
self.w3 = 1e-20
self.lastTimestamp_cf3 = init_time
#other_incS_decay is the decay factor of the other incstat
# ID: the stream ID which produced (v,t)
cdef update_cov(self, str ID, double v, double t): # it is assumes that incStat "ID" has ALREADY been updated with (t,v) [this si performed automatically in method incStat.insert()]
# find incStat
cdef int inc
if ID == self.incS1.ID:
inc = 0
else:
inc = 1
# Decay residules
self.processDecay(t)
# Update extrapolator for current stream AND
# Extrapolate other stream AND
# Compute and update residule
cdef double v_other
if inc == 0:
self.ex1.insert(t,v)
v_other = self.ex2.predict(t)
self.CF3 += (v - self.incS1.mean()) * (v_other - self.incS2.mean())
else:
self.ex2.insert(t,v)
v_other = self.ex1.predict(t)
self.CF3 += (v - self.incS2.mean()) * (v_other - self.incS1.mean())
self.w3 += 1
cdef processDecay(self,double t):
cdef double factor
factor = 1
# check for decay cf3
cdef double timeDiffs_cf3
timeDiffs_cf3 = t - self.lastTimestamp_cf3
if timeDiffs_cf3 > 0:
factor = math.pow(2, (-(self.incS1.Lambda) * timeDiffs_cf3))
self.CF3 *= factor
self.w3 *= factor
self.lastTimestamp_cf3 = t
return factor
#todo: add W3 for cf3
#covariance approximation
cdef cov(self):
return self.CF3 / self.w3
# Pearson corl. coef
cdef pcc(self):
cdef double ss
ss = self.incS1.std() * self.incS2.std()
if ss != 0:
return self.cov() / ss
else:
return 0
def isRelated(self, str ID):
if self.incS1.ID == ID or self.incS2.ID == ID:
return True
else:
return False
# calculates and pulls all correlative stats
cdef get_stats1(self):
return [self.cov(), self.pcc()]
# calculates and pulls all correlative stats AND 2D stats from both streams (incStat)
cdef get_stats2(self):
return [self.incS1.radius([self.incS2]),self.incS1.magnitude([self.incS2]),self.cov(), self.pcc()]
# calculates and pulls all correlative stats AND 2D stats AND the regular stats from both streams (incStat)
cdef get_stats3(self):
return [self.incS1.w,self.incS1.mean(),self.incS1.std(),self.incS2.w,self.incS2.mean(),self.incS2.std(),self.cov(), self.pcc()]
# calculates and pulls all correlative stats AND the regular stats from both incStats AND 2D stats
cdef get_stats4(self):
return [self.incS1.w,self.incS1.mean(),self.incS1.std(),self.incS2.w,self.incS2.mean(),self.incS2.std(), self.incS1.radius([self.incS2]),self.incS1.magnitude([self.incS2]),self.cov(), self.pcc()]
cdef getHeaders(self,int ver,int suffix=True): #ver = {1,2,3,4}
headers = []
s0 = "0"
s1 = "1"
if suffix:
s0 = self.incS1.ID
s1 = self.incS2.ID
if ver == 1:
headers = ["covariance_"+s0+"_"+s1, "pcc_"+s0+"_"+s1]
if ver == 2:
headers = ["radius_"+s0+"_"+s1, "magnitude_"+s0+"_"+s1, "covariance_"+s0+"_"+s1, "pcc_"+s0+"_"+s1]
if ver == 3:
headers = ["weight_"+s0, "mean_"+s0, "std_"+s0,"weight_"+s1, "mean_"+s1, "std_"+s1, "covariance_"+s0+"_"+s1, "pcc_"+s0+"_"+s1]
if ver == 4:
headers = ["weight_" + s0, "mean_" + s0, "std_" + s0, "covariance_" + s0 + "_" + s1, "pcc_" + s0 + "_" + s1]
if ver == 5:
headers = ["weight_"+s0, "mean_"+s0, "std_"+s0,"weight_"+s1, "mean_"+s1, "std_"+s1, "radius_"+s0+"_"+s1, "magnitude_"+s0+"_"+s1, "covariance_"+s0+"_"+s1, "pcc_"+s0+"_"+s1]
return headers
cdef class incStatDB:
cdef double limit
cdef double df_lambda
cdef dict HT
# default_lambda: use this as the lambda for all streams. If not specified, then you must supply a Lambda with every query.
def __init__(self,double limit=np.Inf,double default_lambda=np.nan):
self.HT = dict()
self.limit = limit
self.df_lambda = default_lambda
cdef get_lambda(self,double Lambda):
if not np.isnan(self.df_lambda):
Lambda = self.df_lambda
return Lambda
# Registers a new stream. init_time: init lastTimestamp of the incStat
def register(self,str ID,double Lambda=1,double init_time=0,int isTypeDiff=False):
#Default Lambda?
Lambda = self.get_lambda(Lambda)
#Retrieve incStat
cdef str key
key = ID+"_"+str(Lambda)
cdef incStat incS
incS = self.HT.get(key)
if incS is None: #does not already exist
if len(self.HT) + 1 > self.limit:
raise LookupError(
'Adding Entry:\n' + key + '\nwould exceed incStatHT 1D limit of ' + str(
self.limit) + '.\nObservation Rejected.')
incS = incStat(Lambda, ID, init_time, isTypeDiff)
self.HT[key] = incS #add new entry
return incS
# Registers covariance tracking for two streams, registers missing streams
def register_cov(self,str ID1, str ID2, double Lambda=1, double init_time=0, int isTypeDiff=False):
#Default Lambda?
Lambda = self.get_lambda(Lambda)
# Lookup both streams
cdef incStat incS1
cdef incStat incS2
incS1 = self.register(ID1,Lambda,init_time,isTypeDiff)
incS2 = self.register(ID2,Lambda,init_time,isTypeDiff)
#check for pre-exiting link
for cov in incS1.covs:
if cov.isRelated(ID2):
return cov #there is a pre-exiting link
# Link incStats
inc_cov = incStat_cov(incS1,incS2,init_time)
incS1.covs.append(inc_cov)
incS2.covs.append(inc_cov)
return inc_cov
# updates/registers stream
def update(self,str ID,double t,double v,double Lambda=1,int isTypeDiff=False):
cdef incStat incS
incS = self.register(ID,Lambda,t,isTypeDiff)
incS.insert(v,t)
return incS
# Pulls current stats from the given ID
def get_1D_Stats(self,str ID,double Lambda=1): #weight, mean, std
#Default Lambda?
Lambda = self.get_lambda(Lambda)
#Get incStat
cdef incStat incS
incS = self.HT.get(ID+"_"+str(Lambda))
if incS is None: # does not already exist
return [np.na]*3
else:
return incS.allstats_1D()
# Pulls current correlational stats from the given IDs
def get_2D_Stats(self, str ID1, str ID2, double Lambda=1): #cov, pcc
# Default Lambda?
Lambda = self.get_lambda(Lambda)
# Get incStat
cdef incStat incS
incS = self.HT.get(ID1 + "_" + str(Lambda))
if incS is None: # does not exist
return [np.na]*2
# find relevant cov entry
return incS.cov_pcc(ID2)
# Pulls all correlational stats registered with the given ID
# returns tuple [0]: stats-covs&pccs, [2]: IDs
def get_all_2D_Stats(self, str ID, double Lambda=1): # cov, pcc
# Default Lambda?
Lambda = self.get_lambda(Lambda)
# Get incStat
cdef incStat incS1
incS1 = self.HT.get(ID + "_" + str(Lambda))
if incS1 is None: # does not exist
return ([],[])
# find relevant cov entry
stats = []
IDs = []
for cov in incS1.covs:
stats.append(cov.get_stats1())
IDs.append([cov.incS1.ID,cov.incS2.ID])
return stats,IDs
# Pulls current multidimensional stats from the given IDs
def get_nD_Stats(self,IDs,double Lambda=1): #radius, magnitude (IDs is a list)
# Default Lambda?
Lambda = self.get_lambda(Lambda)
# Get incStats
incStats = []
for ID in IDs:
incS = self.HT.get(ID + "_" + str(Lambda))
if incS is not None: #exists
incStats.append(incS)
# Compute stats
cdef double rad, mag
rad = 0 #radius
mag = 0 #magnitude
for incS in incStats:
rad += incS.var()
mag += incS.mean()**2
return [np.sqrt(rad),np.sqrt(mag)]
# Updates and then pulls current 1D stats from the given ID. Automatically registers previously unknown stream IDs
def update_get_1D_Stats(self, str ID,double t, double v, double Lambda=1, int isTypeDiff=False): # weight, mean, std
cdef incStat incS
incS = self.update(ID,t,v,Lambda,isTypeDiff)
return incS.allstats_1D()
# Updates and then pulls current correlative stats between the given IDs. Automatically registers previously unknown stream IDs, and cov tracking
#Note: AfterImage does not currently support Diff Type streams for correlational statistics.
def update_get_2D_Stats(self, str ID1, str ID2,double t1,double v1,double Lambda=1, int level=1): #level= 1:cov,pcc 2:radius,magnitude,cov,pcc
#retrieve/add cov tracker
cdef incStat_cov inc_cov
inc_cov = self.register_cov(ID1, ID2, Lambda, t1)
# Update cov tracker
inc_cov.update_cov(ID1,v1,t1)
if level == 1:
return inc_cov.get_stats1()
else:
return inc_cov.get_stats2()
# Updates and then pulls current 1D and 2D stats from the given IDs. Automatically registers previously unknown stream IDs
def update_get_1D2D_Stats(self, str ID1, str ID2, double t1,double v1,double Lambda=1): # weight, mean, std
return self.update_get_1D_Stats(ID1,t1,v1,Lambda) + self.update_get_2D_Stats(ID1,ID2,t1,v1,Lambda,level=2)
def getHeaders_1D(self,Lambda=1,ID=''):
# Default Lambda?
cdef double L
L = Lambda
L = self.get_lambda(L)
hdrs = incStat(L,ID).getHeaders_1D(suffix=False)
return [str(L)+"_"+s for s in hdrs]
def getHeaders_2D(self,Lambda=1,IDs=None, ver=1): #IDs is a 2-element list or tuple
# Default Lambda?
cdef double L
L = Lambda
L = self.get_lambda(L)
if IDs is None:
IDs = ['0','1']
hdrs = incStat_cov(incStat(L,IDs[0]),incStat(L,IDs[0]),L).getHeaders(ver,suffix=False)
return [str(Lambda)+"_"+s for s in hdrs]
def getHeaders_1D2D(self,Lambda=1,IDs=None, ver=1):
# Default Lambda?
cdef double L
L = Lambda
L = self.get_lambda(L)
if IDs is None:
IDs = ['0','1']
hdrs1D = self.getHeaders_1D(L,IDs[0])
hdrs2D = self.getHeaders_2D(L,IDs, ver)
return hdrs1D + hdrs2D
def getHeaders_nD(self,Lambda=1,IDs=[]): #IDs is a n-element list or tuple
# Default Lambda?
cdef double L
L = Lambda
ID = ":"
for s in IDs:
ID += "_"+s
L = self.get_lambda(L)
hdrs = ["radius"+ID, "magnitude"+ID]
return [str(L)+"_"+s for s in hdrs]
#cleans out records that have a weight less than the cutoff.
#returns number or removed records.
def cleanOutOldRecords(self,double cutoffWeight,double curTime):
cdef int n
cdef double W
n = 0
dump = sorted(self.HT.items(), key=lambda tup: tup[1][0].getMaxW(curTime))
for entry in dump:
entry[1][0].processDecay(curTime)
W = entry[1][0].w
if W <= cutoffWeight:
key = entry[0]
del entry[1][0]
del self.HT[key]
n=n+1
elif W > cutoffWeight:
break
return n
class incHist:
#ubIsAnom means that the HBOS score for vals that fall past the upped bound are Inf (not 0)
def __init__(self,nbins,Lambda=0,ubIsAnom=True,lbIsAnom=True,lbound=-10,ubound=10,scaleGrace=None):
self.scaleGrace = scaleGrace #the numbe rof instances to observe until a range it determeined
if scaleGrace is not None:
self.lbound = np.Inf
self.ubound = -np.Inf
self.binSize = None
self.isScaling = True
else:
self.lbound = lbound
self.ubound = ubound
self.binSize = (ubound - lbound)/nbins
self.isScaling = False
self.nbins = nbins
self.ubIsAnom = ubIsAnom
self.lbIsAnom = lbIsAnom
self.n = 0
self.Lambda = Lambda
self.W = np.zeros(nbins)
self.lT = np.zeros(nbins) #last timestamp of each respective bin
self.tallestBin = 0 #indx to the bin that currently has the largest freq weight (assumed...)
#assumes even bin width starting from lbound until ubound. beyond bounds are assigned to the closest bin
def getBinIndx(self,val,win=0):
indx = int(np.floor((val - self.lbound)/self.binSize))
if win == 0:
if indx < 0:
return -np.Inf
if indx > (self.nbins - 1):
return np.Inf
return indx
else: #windowed Histogram
if indx - win < 0: #does the left of the window stick out of bounds?
if indx + win >= 0: #if yes, then is there some overlap with inbounds?
return range(0,indx+win+1) #return the inbounds range
else: #then the entire window is our of bounds to the left
return -np.Inf
if indx + win > self.nbins - 1: #does the right of the window stick out of bounds?
if indx - win < self.nbins: #if yes, then is there some overlap with inbounds?
return range(indx - win,self.nbins) #return the inbounds range
else: #then the entire window is our of bounds to the right
return np.Inf
return range(indx-win,indx+win+1)
def processDecay(self, bin, timestamp):
# check for decay
timeDiff = timestamp - self.lT[bin]
if np.isscalar(timeDiff):
if timeDiff > 0:
factor = math.pow(2, (-self.Lambda * timeDiff))
self.W[bin] = self.W[bin] * factor
self.lT[bin] = timestamp
else: #array
timeDiff[timeDiff<0]=0 #don't affect decay of out of order entries
factor = np.power(2, (-self.Lambda * timeDiff))
#b4 = self.W[bin]
self.W[bin] = self.W[bin] * factor
self.lT[bin] = timestamp
def insert(self,val,timestamp,penalty=False):
self.n = self.n + 1
if self.isScaling:
if self.n < self.scaleGrace:
if self.lbound > val:
self.lbound = val
if self.ubound < val:
self.ubound = val
if self.n == self.scaleGrace:
if self.ubound == self.lbound:
self.scaleGrace = self.scaleGrace + 1000
else:
width = self.ubound - self.lbound
self.ubound = self.ubound + width
self.lbound = self.lbound - width
self.binSize = (self.ubound - self.lbound) / self.nbins
self.isScaling = False
else:
bin = self.getBinIndx(val)
if not np.isinf(bin): #
self.processDecay(bin, timestamp)
if penalty:
tallestW = self.W[self.tallestBin]
scale = tallestW if tallestW > 0 else 1
fn = self.W[bin]/scale
inc = self.halfsigmoid(fn+0.005,-1.03)
else:
inc = 1
self.W[bin] = self.W[bin] + inc
#track who has the tallest bin (for normilization)
if self.W[bin] > self.W[self.tallestBin]:
self.tallestBin = bin
def halfsigmoid(self,x,k):
return (k*x)/(k-x+1)
def score(self,val,timestamp=-1,win=0): #HBOS for one dimension
if self.isScaling:
return 0.0
else:
bin = self.getBinIndx(val,win=win)
if np.isscalar(bin):
if np.isinf(bin):
if self.ubIsAnom and bin > 0:
return np.Inf #it's an anomaly because it passes the upper bound
elif self.lbIsAnom and bin < 0:
return np.Inf # it's an anomaly because it passes the lower bound
else:
return 0.0 #it fell outside a bound which is consedered not anomalous
self.processDecay(bin,timestamp) #if timestamp = -1, no decay will be applied
w = np.mean(self.W[bin])
if w == 0:
return np.Inf # no stat history, anomaly!
else:
return np.log(self.W[self.tallestBin] / (w)) # log( 1/( p/p_max ) )
def getFreq(self,val,timestamp=-1): #HBOS for one dimension
bin = self.getBinIndx(val)
self.processDecay(bin,timestamp) #if timestamp = -1, no decay will be applied
if np.isinf(bin):
return np.nan
else:
return self.W[bin]
def getHist(self,timestamp=-1): #HBOS for one dimension
H = np.zeros((len(self.W),1))
for i in range(0,len(self.W)):
self.processDecay(i,timestamp) #if timestamp = -1, no decay will be applied
H[i] = self.W[i]
H = H/np.sum(self.W)
return H
#
# def loadFromJSON(self,jsonstring):
# return '' # !!!! very important: all timestamps in self.lT should be updated so the decay won't wipe out the histogram:
# # self.lT = self.lT + curtime - max(self.lT)
# # this also applies to when the system.train setting is toggled to 'on'
from cpython cimport array
#import cython
cdef class Queue:
cdef double[3] q
cdef int indx
cdef unsigned int n
def __init__(self):
self.q[0] = self.q[1] = self.q[2] = 0
self.indx = 0
self.n = 0
cdef insert(self,double v):
self.q[self.indx] = v
self.indx = (self.indx + 1) % 3
self.n += 1
cdef unroll(self):
cdef double[2] res
if self.n == 2:
res[0] = self.q[0]
res[1] = self.q[1]
return res
if self.indx == 0:
return self.q
cdef double[3] res3
if self.indx == 1:
res3[0] = self.q[1]
res3[1] = self.q[2]
res3[2] = self.q[0]
return res3
else:
res3[0] = self.q[2]
res3[1] = self.q[0]
res3[2] = self.q[1]
return res3
cdef get_last(self):
return self.q[(self.indx-1)%3]
cdef get_mean_diff(self):
cdef double dif
dif = 0
if self.n == 2:
dif=self.q[self.indx%3] - self.q[(self.indx-1)%3]
return dif
else:
# for i in range(2):
# dif+=self.q[(self.indx+i+1)%3] - self.q[(self.indx+i)%3]
dif= (self.q[self.indx%3] - self.q[(self.indx-1)%3]) + (self.q[(self.indx-1)%3] - self.q[(self.indx-2)%3])
return dif/2
cdef class extrapolator:
cdef Queue Qt
cdef Queue Qv
def __init__(self):#,int winsize=3):
self.Qt = Queue() #deque([],winsize) #window of timestamps
self.Qv = Queue() #deque([],winsize) #window of values
def insert(self,double t, double v):
self.Qt.insert(t)
self.Qv.insert(v)
def predict(self, double t):
if self.Qt.n < 2: #not enough points to extrapolate?
if self.Qt.n == 1:
return self.Qv.get_last()
else:
return 0
if (t - self.Qt.get_last())/(self.Qt.get_mean_diff() + 1e-10) > 10: # is the next timestamp 10 time further than the average sample interval?
return self.Qv.get_last() # prediction too far ahead (very likely that we will be way off)
cdef double yp
cdef array.array tm = array.array('d', self.Qt.unroll())
cdef array.array vm = array.array('d', self.Qv.unroll())
yp = self.interpolate(t,tm,vm)
return yp
#TODO: try cythonize lagrange
cdef interpolate(self, double tp, array.array tm, array.array ym):
cdef int n
n = len(tm) - 1
#cdef double[:] lagrpoly = np.array([self.lagrange(tp, i, tm) for i in range(n + 1)])
cdef double y
for i in range(n +1):
"""
Evaluate the i-th Lagrange polynomial at x
based on grid data xm
"""
y = 1
for j in range(n + 1):
if i != j:
y *= (tp - tm[j]) / (tm[i] - tm[j] + 1e-20)
ym[i]*=y
return sum(ym)