forked from leiyu1980/caffe-darknet-convert
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdarknet2caffe.py
305 lines (285 loc) · 12.5 KB
/
darknet2caffe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import sys
sys.path.append('/data/xiaohang/caffe/python')
import caffe
import numpy as np
from collections import OrderedDict
from cfg import *
from prototxt import *
def darknet2caffe(cfgfile, weightfile, protofile, caffemodel):
net_info = cfg2prototxt(cfgfile)
save_prototxt(net_info , protofile, region=False)
net = caffe.Net(protofile, caffe.TEST)
params = net.params
blocks = parse_cfg(cfgfile)
fp = open(weightfile, 'rb')
header = np.fromfile(fp, count=4, dtype=np.int32)
buf = np.fromfile(fp, dtype = np.float32)
fp.close()
layers = []
layer_id = 1
start = 0
for block in blocks:
if start >= buf.size:
break
if block['type'] == 'net':
continue
elif block['type'] == 'convolutional':
batch_normalize = int(block['batch_normalize'])
if block.has_key('name'):
conv_layer_name = block['name']
bn_layer_name = '%s-bn' % block['name']
scale_layer_name = '%s-scale' % block['name']
else:
conv_layer_name = 'layer%d-conv' % layer_id
bn_layer_name = 'layer%d-bn' % layer_id
scale_layer_name = 'layer%d-scale' % layer_id
if batch_normalize:
start = load_conv_bn2caffe(buf, start, params[conv_layer_name], params[bn_layer_name], params[scale_layer_name])
else:
start = load_conv2caffe(buf, start, params[conv_layer_name])
layer_id = layer_id+1
elif block['type'] == 'connected':
if block.has_key('name'):
fc_layer_name = block['name']
else:
fc_layer_name = 'layer%d-fc' % layer_id
start = load_fc2caffe(buf, start, params[fc_layer_name])
layer_id = layer_id+1
elif block['type'] == 'maxpool':
layer_id = layer_id+1
elif block['type'] == 'avgpool':
layer_id = layer_id+1
elif block['type'] == 'region':
layer_id = layer_id + 1
elif block['type'] == 'route':
layer_id = layer_id + 1
else:
print('unknow layer type %s ' % block['type'])
layer_id = layer_id + 1
print('save prototxt to %s' % protofile)
save_prototxt(net_info , protofile, region=True)
print('save caffemodel to %s' % caffemodel)
net.save(caffemodel)
def load_conv2caffe(buf, start, conv_param):
weight = conv_param[0].data
bias = conv_param[1].data
conv_param[1].data[...] = np.reshape(buf[start:start+bias.size], bias.shape); start = start + bias.size
conv_param[0].data[...] = np.reshape(buf[start:start+weight.size], weight.shape); start = start + weight.size
return start
def load_fc2caffe(buf, start, fc_param):
weight = fc_param[0].data
bias = fc_param[1].data
fc_param[1].data[...] = np.reshape(buf[start:start+bias.size], bias.shape); start = start + bias.size
fc_param[0].data[...] = np.reshape(buf[start:start+weight.size], weight.shape); start = start + weight.size
return start
def load_conv_bn2caffe(buf, start, conv_param, bn_param, scale_param):
conv_weight = conv_param[0].data
running_mean = bn_param[0].data
running_var = bn_param[1].data
scale_weight = scale_param[0].data
scale_bias = scale_param[1].data
scale_param[1].data[...] = np.reshape(buf[start:start+scale_bias.size], scale_bias.shape); start = start + scale_bias.size
scale_param[0].data[...] = np.reshape(buf[start:start+scale_weight.size], scale_weight.shape); start = start + scale_weight.size
bn_param[0].data[...] = np.reshape(buf[start:start+running_mean.size], running_mean.shape); start = start + running_mean.size
bn_param[1].data[...] = np.reshape(buf[start:start+running_var.size], running_var.shape); start = start + running_var.size
bn_param[2].data[...] = np.array([1.0])
conv_param[0].data[...] = np.reshape(buf[start:start+conv_weight.size], conv_weight.shape); start = start + conv_weight.size
return start
def cfg2prototxt(cfgfile):
blocks = parse_cfg(cfgfile)
layers = []
props = OrderedDict()
bottom = 'data'
layer_id = 1
topnames = dict()
for block in blocks:
if block['type'] == 'net':
props['name'] = 'Darkent2Caffe'
props['input'] = 'data'
props['input_dim'] = ['1']
props['input_dim'].append(block['channels'])
props['input_dim'].append(block['height'])
props['input_dim'].append(block['width'])
continue
elif block['type'] == 'convolutional':
conv_layer = OrderedDict()
conv_layer['bottom'] = bottom
if block.has_key('name'):
conv_layer['top'] = block['name']
conv_layer['name'] = block['name']
else:
conv_layer['top'] = 'layer%d-conv' % layer_id
conv_layer['name'] = 'layer%d-conv' % layer_id
conv_layer['type'] = 'Convolution'
convolution_param = OrderedDict()
convolution_param['num_output'] = block['filters']
convolution_param['kernel_size'] = block['size']
if block['pad'] == '1':
convolution_param['pad'] = str(int(convolution_param['kernel_size'])/2)
convolution_param['stride'] = block['stride']
if block['batch_normalize'] == '1':
convolution_param['bias_term'] = 'false'
else:
convolution_param['bias_term'] = 'true'
conv_layer['convolution_param'] = convolution_param
layers.append(conv_layer)
bottom = conv_layer['top']
if block['batch_normalize'] == '1':
bn_layer = OrderedDict()
bn_layer['bottom'] = bottom
bn_layer['top'] = bottom
if block.has_key('name'):
bn_layer['name'] = '%s-bn' % block['name']
else:
bn_layer['name'] = 'layer%d-bn' % layer_id
bn_layer['type'] = 'BatchNorm'
batch_norm_param = OrderedDict()
batch_norm_param['use_global_stats'] = 'true'
bn_layer['batch_norm_param'] = batch_norm_param
layers.append(bn_layer)
scale_layer = OrderedDict()
scale_layer['bottom'] = bottom
scale_layer['top'] = bottom
if block.has_key('name'):
scale_layer['name'] = '%s-scale' % block['name']
else:
scale_layer['name'] = 'layer%d-scale' % layer_id
scale_layer['type'] = 'Scale'
scale_param = OrderedDict()
scale_param['bias_term'] = 'true'
scale_layer['scale_param'] = scale_param
layers.append(scale_layer)
if block['activation'] != 'linear':
relu_layer = OrderedDict()
relu_layer['bottom'] = bottom
relu_layer['top'] = bottom
if block.has_key('name'):
relu_layer['name'] = '%s-act' % block['name']
else:
relu_layer['name'] = 'layer%d-act' % layer_id
relu_layer['type'] = 'ReLU'
if block['activation'] == 'leaky':
relu_param = OrderedDict()
relu_param['negative_slope'] = '0.1'
relu_layer['relu_param'] = relu_param
layers.append(relu_layer)
topnames[layer_id] = bottom
layer_id = layer_id+1
elif block['type'] == 'maxpool':
max_layer = OrderedDict()
max_layer['bottom'] = bottom
if block.has_key('name'):
max_layer['top'] = block['name']
max_layer['name'] = block['name']
else:
max_layer['top'] = 'layer%d-maxpool' % layer_id
max_layer['name'] = 'layer%d-maxpool' % layer_id
max_layer['type'] = 'Pooling'
pooling_param = OrderedDict()
pooling_param['kernel_size'] = block['size']
pooling_param['stride'] = block['stride']
pooling_param['pool'] = 'MAX'
max_layer['pooling_param'] = pooling_param
layers.append(max_layer)
bottom = max_layer['top']
topnames[layer_id] = bottom
layer_id = layer_id+1
elif block['type'] == 'avgpool':
avg_layer = OrderedDict()
avg_layer['bottom'] = bottom
if block.has_key('name'):
avg_layer['top'] = block['name']
avg_layer['name'] = block['name']
else:
avg_layer['top'] = 'layer%d-avgpool' % layer_id
avg_layer['name'] = 'layer%d-avgpool' % layer_id
avg_layer['type'] = 'Pooling'
pooling_param = OrderedDict()
pooling_param['kernel_size'] = 7
pooling_param['stride'] = 1
pooling_param['pool'] = 'AVE'
avg_layer['pooling_param'] = pooling_param
layers.append(avg_layer)
bottom = avg_layer['top']
topnames[layer_id] = bottom
layer_id = layer_id+1
elif block['type'] == 'region':
if True:
region_layer = OrderedDict()
region_layer['bottom'] = bottom
if block.has_key('name'):
region_layer['top'] = block['name']
region_layer['name'] = block['name']
else:
region_layer['top'] = 'layer%d-region' % layer_id
region_layer['name'] = 'layer%d-region' % layer_id
region_layer['type'] = 'Region'
region_param = OrderedDict()
region_param['anchors'] = block['anchors'].strip()
region_param['classes'] = block['classes']
region_param['num'] = block['num']
region_layer['region_param'] = region_param
layers.append(region_layer)
bottom = region_layer['top']
topnames[layer_id] = bottom
layer_id = layer_id + 1
elif block['type'] == 'route':
prev_layer_id = layer_id + int(block['layers'])
bottom = topnames[prev_layer_id]
topnames[layer_id] = bottom
layer_id = layer_id + 1
elif block['type'] == 'connected':
fc_layer = OrderedDict()
fc_layer['bottom'] = bottom
if block.has_key('name'):
fc_layer['top'] = block['name']
fc_layer['name'] = block['name']
else:
fc_layer['top'] = 'layer%d-fc' % layer_id
fc_layer['name'] = 'layer%d-fc' % layer_id
fc_layer['type'] = 'InnerProduct'
fc_param = OrderedDict()
fc_param['num_output'] = int(block['output'])
fc_layer['inner_product_param'] = fc_param
layers.append(fc_layer)
bottom = fc_layer['top']
if block['activation'] != 'linear':
relu_layer = OrderedDict()
relu_layer['bottom'] = bottom
relu_layer['top'] = bottom
if block.has_key('name'):
relu_layer['name'] = '%s-act' % block['name']
else:
relu_layer['name'] = 'layer%d-act' % layer_id
relu_layer['type'] = 'ReLU'
if block['activation'] == 'leaky':
relu_param = OrderedDict()
relu_param['negative_slope'] = '0.1'
relu_layer['relu_param'] = relu_param
layers.append(relu_layer)
topnames[layer_id] = bottom
layer_id = layer_id+1
else:
print('unknow layer type %s ' % block['type'])
topnames[layer_id] = bottom
layer_id = layer_id + 1
net_info = OrderedDict()
net_info['props'] = props
net_info['layers'] = layers
return net_info
if __name__ == '__main__':
import sys
if len(sys.argv) != 5:
print('try:')
print('python darknet2caffe.py tiny-yolo-voc.cfg tiny-yolo-voc.weights tiny-yolo-voc.prototxt tiny-yolo-voc.caffemodel')
print('')
print('please add name field for each block to avoid generated name')
exit()
cfgfile = sys.argv[1]
#net_info = cfg2prototxt(cfgfile)
#print_prototxt(net_info)
#save_prototxt(net_info, 'tmp.prototxt')
weightfile = sys.argv[2]
protofile = sys.argv[3]
caffemodel = sys.argv[4]
darknet2caffe(cfgfile, weightfile, protofile, caffemodel)