-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathslides-como2018.tex
1541 lines (1320 loc) · 63.9 KB
/
slides-como2018.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass[11pt,utf8,notheorems,compress,t]{beamer}
\usepackage{etex}
\usepackage{pgfpages}
\setbeameroption{show notes on second screen}
\setbeamertemplate{note page}[plain]
\newcommand{\jnote}[2]{\only<#1>{\note{\setlength\parskip{\medskipamount}\justifying#2\par}}}
% Workaround for the issue described at
% https://tex.stackexchange.com/questions/164406/beamer-using-href-in-notes.
\newcommand{\fixedhref}[2]{\makebox[0pt][l]{\hspace*{\paperwidth}\href{#1}{#2}}\href{#1}{#2}}
\usepackage[english]{babel}
\usepackage{mathtools}
\usepackage{booktabs}
\usepackage{stmaryrd}
\usepackage{array}
\usepackage{ragged2e}
\usepackage{multicol}
\usepackage{tabto}
\usepackage{xstring}
\usepackage{ifthen}
\usepackage{soul}\setul{0.3ex}{}
\usepackage[all]{xy}
\xyoption{rotate}
\usepackage{tikz}
\usetikzlibrary{calc,shapes,shapes.callouts,shapes.arrows,patterns,fit,backgrounds,decorations.pathmorphing}
\hypersetup{colorlinks=true}
\graphicspath{{images/}}
\usepackage[protrusion=true,expansion=true]{microtype}
\setlength\parskip{\medskipamount}
\setlength\parindent{0pt}
\title{How topos theory can help commutative algebra}
\author{Ingo Blechschmidt}
\date{June 29th, 2018}
\useinnertheme[shadow=true]{rounded}
\useoutertheme[subsection=false]{miniframes}
\setbeamerfont{block title}{size={}}
\useinnertheme{rectangles}
\usecolortheme{orchid}
\usecolortheme{seahorse}
\definecolor{mypurple}{RGB}{150,0,255}
\setbeamercolor{structure}{fg=mypurple}
\definecolor{myred}{RGB}{150,0,0}
\setbeamercolor*{title}{bg=myred,fg=white}
\setbeamercolor*{titlelike}{bg=myred,fg=white}
\setbeamercolor{frame}{bg=black}
\usefonttheme{serif}
\usepackage[T1]{fontenc}
\usepackage{libertine}
\newcommand{\A}{\mathcal{A}}
\newcommand{\B}{\mathcal{B}}
\renewcommand{\AA}{\mathbb{A}}
\renewcommand{\C}{\mathcal{C}}
\newcommand{\E}{\mathcal{E}}
\newcommand{\F}{\mathcal{F}}
\newcommand{\M}{\mathcal{M}}
\renewcommand{\G}{\mathcal{G}}
\newcommand{\J}{\mathcal{J}}
\newcommand{\GG}{\mathbb{G}}
\renewcommand{\O}{\mathcal{O}}
\newcommand{\K}{\mathcal{K}}
\newcommand{\NN}{\mathbb{N}}
\newcommand{\QQ}{\mathbb{Q}}
\newcommand{\RR}{\mathbb{R}}
\newcommand{\TT}{\mathbb{T}}
\newcommand{\PP}{\mathbb{P}}
\newcommand{\ZZ}{\mathbb{Z}}
\renewcommand{\P}{\mathcal{P}}
\newcommand{\aaa}{\mathfrak{a}}
\newcommand{\fff}{\mathfrak{f}}
\newcommand{\ppp}{\mathfrak{p}}
\newcommand{\mmm}{\mathfrak{m}}
\newcommand{\defeq}{\vcentcolon=}
\newcommand{\defeqv}{\vcentcolon\equiv}
\newcommand{\Sh}{\mathrm{Sh}}
\newcommand{\GL}{\mathrm{GL}}
\newcommand{\Zar}{\mathrm{Zar}}
\newcommand{\op}{\mathrm{op}}
\newcommand{\Set}{\mathrm{Set}}
\newcommand{\Ring}{\mathrm{Ring}}
\newcommand{\LocRing}{\mathrm{LocRing}}
\newcommand{\Eff}{\mathrm{Ef{}f}}
\newcommand{\Sch}{\mathrm{Sch}}
\newcommand{\Aff}{\mathrm{Aff}}
\newcommand{\LRS}{\mathrm{LRS}}
\newcommand{\Hom}{\mathrm{Hom}}
\newcommand{\Spec}{\mathrm{Spec}}
\newcommand{\lra}{\longrightarrow}
\newcommand{\RelSpec}{\operatorname{Spec}}
\renewcommand{\_}{\mathpunct{.}}
\newcommand{\?}{\,{:}\,}
\newcommand{\speak}[1]{\ulcorner\text{\textnormal{#1}}\urcorner}
\newcommand{\ull}[1]{\underline{#1}}
\newcommand{\affl}{\ensuremath{{\ull{\AA}^1}}}
\newcommand{\Ll}{\text{iff}}
\newcommand{\inv}{inv.\@}
\newcommand{\seq}{\vdash_{\!\!\!\vec x}}
\newcommand{\hg}{\mathbin{:}} % homogeneous coordinates
\setbeamertemplate{blocks}[rounded][shadow=false]
% Adapted from https://latex.org/forum/viewtopic.php?t=2251 (Stefan Kottwitz)
\newenvironment<>{hilblock}{
\begin{center}
\begin{minipage}{9.05cm}
\setlength{\textwidth}{9.05cm}
\begin{actionenv}#1
\def\insertblocktitle{}
\par
\usebeamertemplate{block begin}}{
\par
\usebeamertemplate{block end}
\end{actionenv}
\end{minipage}
\end{center}}
\newcommand{\bignumber}[1]{
\renewcommand{\insertenumlabel}{#1}\scalebox{1.5}{\usebeamertemplate{enumerate item}}
}
\newenvironment{indentblock}{%
\list{}{\leftmargin\leftmargin}%
\item\relax
}{%
\endlist
}
\newcommand{\hcancel}[5]{%
\tikz[baseline=(tocancel.base)]{
\node[inner sep=0pt,outer sep=0pt] (tocancel) {#1};
\draw[red, line width=0.4mm] ($(tocancel.south west)+(#2,#3)$) -- ($(tocancel.north east)+(#4,#5)$);
}%
}
\tikzset{
invisible/.style={opacity=0,text opacity=0},
visible on/.style={alt={#1{}{invisible}}},
alt/.code args={<#1>#2#3}{%
\alt<#1>{\pgfkeysalso{#2}}{\pgfkeysalso{#3}}}
}
\newcommand{\pointthis}[3]{%
\tikz[remember picture,baseline]{
\node[anchor=base,inner sep=0,outer sep=0] (#2) {#2};
\node[visible on=#1,overlay,rectangle callout,rounded corners,callout relative pointer={(0.3cm,0.5cm)},fill=blue!20] at ($(#2.north)+(-0.1cm,-1.1cm)$) {#3};
}%
}
% Adapted from https://latex.org/forum/viewtopic.php?t=2251 (Stefan Kottwitz)
\newenvironment<>{varblock}[2]{
\begin{center}
\begin{minipage}{#1}
%\setlength{\textwidth}{#1}
\begin{actionenv}#3
\def\insertblocktitle{\centering #2}
\par
\usebeamertemplate{block begin}}{
\par
\usebeamertemplate{block end}
\end{actionenv}
\end{minipage}
\end{center}}
\setbeamertemplate{frametitle}{%
\vskip0.7em%
\leavevmode%
\begin{beamercolorbox}[dp=1ex,center]{}%
\usebeamercolor[fg]{item}{\textbf{{\Large \insertframetitle}}}
\end{beamercolorbox}%
}
\setbeamertemplate{navigation symbols}{}
\newcounter{framenumberpreappendix}
\newcommand{\backupstart}{
\setcounter{framenumberpreappendix}{\value{framenumber}}
}
\newcommand{\backupend}{
\addtocounter{framenumberpreappendix}{-\value{framenumber}}
\addtocounter{framenumber}{\value{framenumberpreappendix}}
}
\setbeamertemplate{headline}{%
\begin{beamercolorbox}[wd=\paperwidth,ht=2.25ex]{}%
\insertsectionnavigationhorizontal{\paperwidth}{}{}%
\end{beamercolorbox}%
\vskip0pt%
}
\setbeamertemplate{footline}{%
\begin{beamercolorbox}[wd=\paperwidth,ht=2.25ex,dp=1ex,right,rightskip=1mm,leftskip=1mm]{}%
% \inserttitle
\hfill
\insertframenumber\,/\,\inserttotalframenumber
\end{beamercolorbox}%
\vskip0pt%
}
\newcommand{\hil}[1]{{\usebeamercolor[fg]{item}{\textbf{#1}}}}
\newcommand{\bad}[1]{\textcolor{red!90}{\textnormal{#1}}}
\begin{document}
%\addtocounter{framenumber}{-1}
%{\usebackgroundtemplate{\includegraphics[width=\paperwidth]{slides-como2018-titlepage-blurred}}
%\begin{frame}[plain]\end{frame}}
\addtocounter{framenumber}{-1}
{\usebackgroundtemplate{\begin{minipage}{\paperwidth}\vspace*{4.95cm}\includegraphics[width=\paperwidth]{topos-horses}\end{minipage}}
\begin{frame}[c]
\centering
\medskip
\hspace*{-3.9em}%
\hil{How topos theory can help commutative algebra} \\
\emph{-- an invitation --}
\bigskip
\bigskip
\begin{columns}
\small
\begin{column}{0.33\textwidth}
\centering
\bignumber{1}
\smallskip
\hil{Background on the internal language}
\medskip
\end{column}
\begin{column}{0.33\textwidth}
\centering
\bignumber{2}
\smallskip
\hil{Applications in commutative algebra}
\medskip
\end{column}
\begin{column}{0.33\textwidth}
\centering
\bignumber{3}
\smallskip
\hil{The mystery of \mbox{\!\!nongeometric sequents}}
\medskip
\end{column}
\end{columns}
\scriptsize
Ingo Blechschmidt (MPI Leipzig) \\
Toposes in Como \\
June 29th, 2018
\par
\end{frame}}
\section{Motivation}
\begin{frame}{Motivating test cases}
Let $A$ be a ring (commutative, with unit, $1 = 0$ allowed). \\
Assume that $A$ is reduced: If $x^n = 0$, then $x = 0$.
\jnote{1-2}{The two displayed statements are trivial for fields. It is
therefore natural to try to reduce the general situation to the field
situation.}
\jnote{2}{The displayed proofs, which could have been taken from any
standard textbook on commutative algebra, succeed in this reduction quite
easily by employing maximal ideals or minimal prime ideals. However, this way
of reducing comes at a cost: It requires the Boolean Prime Ideal Theorem
(for ensuring the existence of a prime ideal and for ensuring that stalks at
minimal prime ideals are fields) and even the full axiom of choice (for
ensuring the existence of a minimal prime ideal).
It therefore doesn't work in the internal universe of most toposes, and in
any case it obscures explicit computational content: Statements so simple as
the two displayed ones should admit explicit, computational proofs.
We'll learn how the internal language of a certain well-chosen topos provides
a way to perform the reduction in an entirely constructive manner. If so
desired, the resulting topos-theoretic proofs can be unwound to yield fully
explicit, topos-free, direct proofs.
Beautiful constructive proofs can also be found in Richman's note on
\fixedhref{https://www.ams.org/journals/proc/1988-103-04/S0002-9939-1988-0954974-5/S0002-9939-1988-0954974-5.pdf}{nontrivial
uses of trivial rings} and in the
\fixedhref{https://arxiv.org/abs/1605.04832}{recent textbook by Lombardi and
Quitté} on constructive commutative algebra.}
\jnote{3}{We can slightly reduce the requirements of the proof of the first
statement by employing not a maximal ideal, but a prime ideal. The existence
of maximal ideals in nontrivial rings is equivalent to the axiom of choice,
while the existence of prime ideals is equivalent to the weaker Boolean Prime
Ideal Theorem. However, this improvement doesn't change the main point; the
proof is still wildly nonconstructive.}
\jnote{4-}{Grothendieck's generic freeness lemma is an important theorem in
algebraic geometry, where it is usually stated in the following geometric
form:
\begin{indentblock}Let~$X$ be a reduced scheme. Let~$\B$ be
an~$\O_X$-algebra of finite type. Let~$\M$ be a~$\B$-module of finite type.
Then over a dense open,
\begin{enumerate}
\item[(a)] $\B$ and~$\M$ are locally free as sheaves of~$\O_X$-modules,
\item[(b)] $\B$ is of finite presentation as a sheaf of~$\O_X$-algebras and
\item[(c)] $\M$ is of finite presentation as a sheaf of~$\B$-modules.
\end{enumerate}\end{indentblock}}
\jnote{5}{All previously known proofs proceed in a series of reduction steps,
finally culminating in the case where~$A$ is a Noetherian integral domain.
They are somewhat convoluted (for instance, the proof in the Stacks Project
is three pages long) and employ several results in commutative algebra which
have not yet been constructivized.
Using the internal language of toposes, we will give a short, conceptual and
constructive proof of Grothendieck's generic freeness lemma. Again, if so
desired, one can unwind the internal proof to obtain a
constructive proof which doesn't reference topos theory. The proof obtained
in this way is still an improvement on the previously known proofs, requiring
no advanced prerequisites in commutative algebra, and takes
\fixedhref{https://arxiv.org/abs/1807.01231}{about
a page}.}
\only<1-3>{\begin{columns}[t]
\begin{column}[t]{0.50\textwidth}
\centering
\scalebox{0.8}{$\begin{pmatrix}
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot
\end{pmatrix}$}
\vspace*{-1em}
\begin{varblock}{\textwidth}{A baby application}
\justifying
Let~$M$ be a surjective matrix over~$A$ with more rows than columns.
Then~$1 = 0$ in~$A$.
\end{varblock}
\justifying
\only<2>{\textbf{Proof.} \bad{Assume not.} Then there is~a \bad{maximal
ideal} $\mmm$. The matrix is surjective over the field~$A/\mmm$. This is a
contradiction to basic linear algebra.}
\only<3>{\textbf{Proof.} \bad{Assume not.} Then there is~a \bad{prime
ideal} $\ppp$. The matrix is surjective over the
field~$\mathrm{Quot}(A/\ppp)$. This is a contradiction to basic linear
algebra.}
\end{column}
\begin{column}[t]{0.5\textwidth}
\centering
\scalebox{0.8}{$\begin{pmatrix}
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot
\end{pmatrix}$}
\vspace*{-1em}
\begin{varblock}{\textwidth}{A child application}
\justifying
Let~$M$ be an injective matrix over~$A$ with more columns than rows.
Then~$1 = 0$ in~$A$.
\end{varblock}
\justifying
\visible<2-3>{\textbf{Proof.} \bad{Assume not.} Then there is a \bad{minimal
prime ideal} $\ppp$. The matrix is injective over the field~$A_\ppp = A[(A
\setminus \ppp)^{-1}]$. This is a contradiction to basic linear algebra.}
\end{column}
\end{columns}}
\pause
\pause
\pause
\centering
\includegraphics[height=3em]{generic-freeness}
\vspace*{-1em}
\begin{varblock}{0.9\textwidth}{Generic freeness$\phantom{p}$}
\justifying
Let~$B$ be an~$A$-algebra of finite type ($\cong A[X_1,\ldots,X_n]/\aaa$). \\
Let~$M$ be a finitely generated~$B$-module ($\cong B^m/U$).
If~$f = 0$ is the only element of~$A$ such that
\begin{enumerate}
\item $B[f^{-1}]$ and $M[f^{-1}]$ are free modules over $A[f^{-1}]$,
\item $A[f^{-1}] \to B[f^{-1}]$ is of finite presentation and
\item $M[f^{-1}]$ is finitely presented as a module over~$B[f^{-1}]$,
\end{enumerate}
then $1 = 0$ in~$A$.
\end{varblock}
\vspace*{-0.5em}
\pause\center
\begin{minipage}{0.9\textwidth}
\textbf{Proof.} See [Stacks Project, Tag 051Q].
\end{minipage}
\end{frame}
\section{Internal language}
\begin{frame}{The internal language of a topos}
For any topos~$\E$ and any formula~$\varphi$, we define the meaning of
\vspace*{-0.5em}
\[
\text{``$\E \models \varphi$''} \quad
\text{(``$\varphi$ holds in the internal universe of~$\E$'')}
\]
\vspace*{-1.0em}
using (Shulman's extension of) the \hil{Kripke--Joyal semantics}.
\jnote{1}{The internal language of a topos allows to construct objects and
morphisms of the topos, formulate statements about them and prove such
statements \emph{in a naive element-based language}. From the internal point
of view, objects look like sets [more precisely, types]; morphisms look like
maps; monomorphisms look like injections; epimorphisms
look like surjections; group objects look like groups; and so on.
To determine whether a statement~$\varphi$ holds in the internal universe of a
given topos, we can use the Kripke--Joyal semantics to translate it into an
ordinary external statement and then check the validity of the external
translation.
For instance, in the ef{}fective topos the curious statement~``any function
$\NN \to \NN$ is computable'' holds, for its external meaning is the
triviality ``there is a Turing machine which given a Turing machine computing
some function~$f : \NN \to \NN$ outputs a Turing machine computing~$f$''. In
contrast, the statement~``any function~$\NN \to \NN$ is either the zero
function or not'' does not hold in the ef{}fective topos, since its external
meaning is ``there exists a Turing machine which given a Turing machine
computing some function~$f : \NN \to \NN$ decides whether~$f$ is the zero
function or not''.}
\jnote{2}{Any theorem which has an intuitionistic proof holds in
the internal universe of any topos. The restriction to intuitionistic logic
is not due to philosophical concerns; it is a fact of life that only very few
toposes validate the law of excluded middle (for instance, sheaf toposes over
discrete topological spaces do if the law of excluded middle is available in
the metatheory). Luckily, vast amounts of mathematics can be developed in a
purely intuitionistic setting.
The internal language machinery itself can be developed in an intuitionistic
setting.
The standard internal language of toposes in not enough for our purposes, as
it misses unbounded quantification (``for all groups'', ``for all rings'')
and dependent types. Shulman's \fixedhref{https://arxiv.org/abs/1004.3802}{stack
semantics} offers what we need. No knowledge of stacks is necessary to enjoy
his paper. Prior work includes
\fixedhref{https://www.cl.cam.ac.uk/~amp12/papers/polist/polist.pdf}{Polymorphism
is Set Theoretic, Constructively} by Pitts and
\fixedhref{http://www.phil.cmu.edu/projects/ast/Papers/Awodey-Butz-Simpson-Streicher-APAL-2013.pdf}{Relating
first-order set theories, toposes and categories of classes} by Awodey, Butz,
Simpson and Streicher (obtained independently and published after Shulman).}
\vspace*{-1em}
\begin{columns}
\def\insertblocktitle{}
\begin{column}{0.25\textwidth}\usebeamertemplate{block begin}
\centering
$\Set \models \varphi$ \\
``$\varphi$ holds in the \\ usual sense.''
\usebeamertemplate{block end}\end{column}
\begin{column}{0.25\textwidth}\usebeamertemplate{block begin}
\centering
$\Sh(X) \models \varphi$ \\
``$\varphi$ holds continuously.''
\usebeamertemplate{block end}\end{column}
\begin{column}{0.25\textwidth}\usebeamertemplate{block begin}
\centering
$\Eff \models \varphi$ \\
``$\varphi$ holds \\ computably.''
\usebeamertemplate{block end}\end{column}
\end{columns}
\medskip
Any topos supports \hil{mathematical reasoning}:
\vspace*{-1.5em}
\begin{hilblock}
If~$\E \models \varphi$ and if~$\varphi$ entails~$\psi$
\pointthis{<2>}{intuitionistically}{%
no $\varphi \vee \neg\varphi$,\ \
no $\neg\neg\varphi \Rightarrow \varphi$,\ \
no axiom of choice},
then~$\E \models \psi$.
\end{hilblock}
\end{frame}
\begin{frame}{The Kripke--Joyal semantics of~$\boldsymbol{\Sh(X)}$}
\small\vspace*{-0.5em}
Let~$X$ be a topological space. We recursively define
\[ U \models \varphi \quad \text{(``$\varphi$ holds on~$U$'')} \]
\mbox{for open subsets~$U \subseteq X$ and formulas~$\varphi$.
Write~``$\Sh(X) \models \varphi$'' to mean~$X \models \varphi$.}
\footnotesize
\[ \renewcommand{\arraystretch}{1.08}\begin{array}{@{}l@{\ \ }c@{\ \ }l@{}}
U \models \top &\Ll& \text{true} \\
U \models \bot &\Ll& \hcancel{\text{false}}{0pt}{3pt}{0pt}{-2pt}\ U = \emptyset \\
U \models s = t \? F &\Ll& s|_U = t|_U \in F(U) \\
U \models \varphi \wedge \psi &\Ll&
\text{$U \models \varphi$ and $U \models \psi$} \\
U \models \varphi \vee \psi &\Ll&
\hcancel{\text{$U \models \varphi$ or $U \models \psi$}}{0pt}{3pt}{0pt}{-2pt}\ \text{there exists a covering $U = \bigcup_i U_i$} \\
&& \quad\quad\text{such that for all~$i$: $U_i \models \varphi$ or $U_i \models \psi$} \\
U \models \varphi \Rightarrow \psi &\Ll&
\text{for all open~$V \subseteq U$: }
\text{$V \models \varphi$ implies $V \models \psi$} \\
U \models \forall s \? F\_ \varphi(s) &\Ll&
\text{for all open $V \subseteq U$ and sections~$s_0 \in F(V)$: $V \models \varphi(s_0)$} \\
U \models \forall F\_ \varphi(F) &\Ll&
\text{for all open $V \subseteq U$ and sheaves~$F_0$ over~$V$: $V \models \varphi(F_0)$} \\
U \models \exists s \? F\_ \varphi(s) &\Ll&
\hcancel{\text{there exists $s_0 \in F(U)$ such that $U \models \varphi(s_0)$}}{0pt}{3pt}{0pt}{-2pt} \\
&&
\text{there exists a covering $U = \bigcup_i U_i$ such that for all~$i$:} \\
&& \quad\quad \text{there exists~$s_0 \in F(U_i)$ such that $U_i \models \varphi(s_0)$} \\
U \models \exists F\_ \varphi(F) &\Ll&
\hcancel{\text{there exists a sheaf $F_0$ on $U$ such that $U \models
\varphi(F_0)$}}{0pt}{3pt}{0pt}{-2pt} \\
&&
\text{there exists a covering $U = \bigcup_i U_i$ such that for all~$i$:} \\
&& \quad\quad \text{there exists a sheaf~$F_0$ on $U_i$ such that $U_i \models \varphi(F_0)$}
\end{array} \]
\jnote{1}{Many interesting sheaves have few global sections, which is why a
definition such as ``$U \models \forall s \? F\_ \varphi(s)$ iff $U \models
\varphi(s_0)$ for all~$s_0 \in F(U)$'' would miss the point.
Here is an explicit example of the translation procedure. Let~$\alpha : F
\to G$ be a morphism of sheaves on~$X$. Then (the corner quotes ``$\speak{\ldots}$''
indicate that translation into formal language is left to the reader):
\footnotesize
\begin{align*}
& X \models \speak{$\alpha$ is injective} \\[0.2em]
\Longleftrightarrow\
& X \models \forall s\?F\_ \forall t\?F\_ \alpha(s) = \alpha(t) \Rightarrow s = t \\[0.2em]
\Longleftrightarrow\ &
\text{for all open~$U \subseteq X$, sections $s_0 \in F(U)$:} \\
&\qquad\qquad
U \models \forall t\?F\_ \alpha(s_0) = \alpha(t) \Rightarrow s_0 = t \\[0.2em]
\Longleftrightarrow\ &
\text{for all open~$U \subseteq X$, sections $s_0 \in F(U)$:} \\
&\qquad\qquad
\text{for all open~$V \subseteq U$, sections $t_0 \in F(V)$:} \\
&\qquad\qquad\qquad\qquad
V \models \alpha(s_0) = \alpha(t_0) \Rightarrow s_0 = t_0 \\[0.2em]
\Longleftrightarrow\ &
\text{for all open~$U \subseteq X$, sections $s_0 \in F(U)$:} \\
&\qquad\qquad
\text{for all open~$V \subseteq U$, sections $t_0 \in F(V)$:} \\
&\qquad\qquad\qquad\qquad
\text{for all open $W \subseteq V$: $\alpha_V(s_0|_W) = \alpha_V(t_0|_W)$ implies $s_0|_W = t_0|_W$} \\[0.2em]
\Longleftrightarrow\ &
\text{for all open~$U \subseteq X$, sections $s, t \in F(U)$:
$\alpha_U(s) = \alpha_U(t)$ implies $s = t$} \\[0.2em]
\Longleftrightarrow\ &
\text{$\alpha$ is a monomorphism of sheaves}
\end{align*}}
\end{frame}
\begin{frame}{Internalizing parameter-dependence}
\justifying
Let~$X$ be a space. A continuous family~$(f_x)_{x \in X}$ of continuous
functions (that is, a continuous function~$f : X \times \RR \to \RR$;
$f_x(a) = f(x,a)$) induces an endomorphism of the sheaf~$\C$ of continuous
functions:
\[
\bar f : \C \longrightarrow \C,\
\text{on $U$:}\ s \longmapsto (x \mapsto f_x(s(x))).
\]
\vspace*{-1em}
\begin{itemize}
\item $\Sh(X) \models \speak{The set $\C$ is the set of (Dedekind) reals}$.
\item $\Sh(X) \models \speak{The function $\bar f : \RR \to \RR$ is continuous}$. \bigskip
\item Iff $f_x(-1) < 0$ for all $x$, then $\Sh(X) \models \bar f(-1) < 0$.
\item Iff $f_x(+1) > 0$ for all $x$, then $\Sh(X) \models \bar f(+1) > 0$.
\item Iff all $f_x$ are increasing, then $\Sh(X) \models \speak{$\bar f$ is
increasing}$. \bigskip
\item \ \\[-1.2em]\mbox{Iff there is an open cover~$X = \bigcup_i U_i$ such
that for each~$i$ there is a} \mbox{continuous function~$s : U_i \to \RR$
with~$f_x(s(x)) = 0$ for all~$x \in U_i$,} then $\Sh(X) \models \exists s
\? \RR\_ \bar f(s) = 0$.
\end{itemize}
\jnote{1}{This slide, unrelated to commutative algebra or algebraic geometry,
aims to illustrate one of the basic uses of the internal language of toposes:
Upgrading any theorem admitting an intuitionistic proof to a
parameter-dependent version.
Constructively, there are several non-equivalent forms of the intermediate
value theorem. The following version doesn't admit an intuitionistic proof:
\begin{indentblock}Let~$g : \RR \to \RR$ be a function between the (Dedekind)
reals which is continuous in the usual epsilon/delta sense. Assume~$g(-1) < 0
< g(1)$. Then there exists a number~$x \in \RR$ such that~$g(x) = 0$.
\end{indentblock}
If there was an intuitionistic proof, the statement would hold in any topos,
so in particular in sheaf toposes over topological spaces. By the
translations shown on the slide, this
would amount to the following strengthening of the intermediate value
theorem: In continuous families of continuous functions, zeros can locally be
picked continuously. However, this strengthening is invalid, as
\fixedhref{https://raw.githubusercontent.com/iblech/internal-methods/master/images/zeros-in-families.mp4}{this
video shows}.
\centering\includegraphics[width=0.1\textwidth]{zeros-in-families-still}}
\jnote{2}{In contrast, the following version does admit an intuitionistic
proof. We can therefore interpret it in sheaf toposes over topological
spaces and thereby obtain the strengthening that in continuous families of
strictly increasing continuous functions, zeros can locally be picked
continuously. You are invited to prove this strengthening directly, without
reference to the internal language.
\begin{indentblock}Let~$g : \RR \to \RR$ be a function between the (Dedekind)
reals which is continuous in the usual epsilon/delta sense and which is
strictly increasing ($a < b$ implies~$g(a) < g(b)$). Assume~$g(-1) < 0 <
g(1)$. Then there exists a number~$x \in \RR$ such that~$g(x) =
0$.\end{indentblock}}
\end{frame}
\section{The little Zariski topos}
\begin{frame}{The little Zariski topos}
Let~$A$ be a ring. Its \hil{little Zariski topos} is equivalently
\begin{enumerate}
\item the classifying topos of \hil{local localizations} of $A$,
\item the classifying locale of \hil{prime filters} of $A$,
\item the locale given by the frame of \hil{radical ideals} of $A$,
\item the topos of sheaves over the poset $A$ with $f \preceq g$ iff $f \in \sqrt{(g)}$ and with $(f_i \to f)_i$ deemed covering iff $f \in \sqrt{(f_i)_i}$ or
\item the topos of sheaves over $\Spec(A)$.
\end{enumerate}
Its associated topological space of points is the \hil{classical spectrum}
\[ \{ \fff \subseteq A \,|\, \text{$\fff$ prime filter} \} + \text{Zariski topology}. \]
It has \hil{enough points} if the Boolean Prime Ideal Theorem holds.
\footnotesize
Prime ideal:\, $0 \in \ppp$;\, $x \in \ppp \wedge y \in \ppp \Rightarrow x+y \in \ppp$;\, $1 \not\in \ppp$;\, $xy \in \ppp \Leftrightarrow x \in \ppp \vee y \in \ppp$
Prime filter:\, $0 \not\in \fff$;\,\,
$x+y \in \fff \Rightarrow x \in \fff \vee y \in \fff$;
\hspace*{0.5pt}\,\,
$1 \in \fff$;\,
$xy \in \fff \Leftrightarrow x \in \fff \wedge y \in \fff$
\jnote{1}{Any geometric theory has a classifying topos; if the theory under
consideration is propositional (doesn't have any sorts), then its classifying
topos can be chosen to be the topos of sheaves over a locale. One can also
give a direct account of classifying locales, as a pedagogical stepping stone
to the full theory of classifying toposes.
The slide contains a small lie: The classical definition of the spectrum of a
ring is via the set of prime ideals of~$A$, not prime filters. If the law of
excluded middle is available, there is no difference between these
definitions since the complement of a prime ideal is a prime filter and vice
versa.
One can also consider the classifying locale of prime \emph{ideals} of~$A$.
Its associated topological space of points is the set of prime ideals
of~$A$ equipped with the \emph{constructible topology}.
In an intuitionistic context, any of the (generalized) spaces of items~1--4
can be adopted as sensible definitions of the spectrum of~$A$. Item~5 is then
a tautology. The classical definition of the spectrum as a topological space
doesn't work very well, because verifying the universal property one expects
of it requires the Boolean Prime Ideal Theorem. Most dramatically, there are
rings which are not trivial yet have neither prime ideals nor prime filters.
The classical definition yields in this case the empty space.}
\end{frame}
\begin{frame}{First steps in the little Zariski topos}
Let~$A$ be a ring. Let~$\fff_0$ be the \hil{generic prime filter} of~$A$; it
is a subobject of the constant sheaf~$\ull{A}$ of the little Zariski topos.
\begin{itemize}
\item The ring $A^\sim \defeq \ull{A}[\fff_0^{-1}]$ is the generic local
localization of $A$.
\item Given an~$A$-module~$M$, we have the~$A^\sim$-module $M^\sim \defeq
\ull{M}[\fff_0^{-1}]$.
\end{itemize}
\jnote{1}{The Kripke--Joyal semantics for the little Zariski topos amounts to
the following: $\Spec(A) \models \varphi$ iff~$D(1) \models \varphi$, and the
clauses for~$D(f) \models \varphi$, where~$f$ ranges over the elements
of~$A$, are given by the following table.
\[\footnotesize\renewcommand{\arraystretch}{1.25}\begin{array}{@{}l@{\quad}c@{\quad}l@{}}
D(f) \models \top &\text{iff}& \text{true} \\
D(f) \models \bot &\text{iff}& \text{$f$ is nilpotent} \\
D(f) \models x = y &\text{iff}& x = y \in M[f^{-1}] \\
D(f) \models \varphi \wedge \psi &\text{iff}&
\text{$D(f) \models \varphi$ and $D(f) \models \psi$} \\
D(f) \models \varphi \vee \psi &\text{iff}&
\text{there exists a partition~$f^n = fg_1 + \cdots + fg_m$ with,} \\
&&\quad\text{for each~$i$, $D(fg_i) \models \varphi$ or $D(fg_i) \models \psi$} \\
D(f) \models \varphi \Rightarrow \psi &\text{iff}&
\text{for all~$g \in A$, $D(fg) \models \varphi$ implies $D(fg) \models \psi$} \\
D(f) \models \forall x\?M^\sim\_ \varphi(x) &\text{iff}&
\text{for all~$g \in A$ and $x_0 \in M[(fg)^{-1}]$, $D(fg) \models \varphi(x_0)$} \\
D(f) \models \exists x\?M^\sim\_ \varphi(x) &\text{iff}&
\text{there exists a partition~$f^n = fg_1 + \cdots + fg_m$ with,} \\
&&\quad\text{for each~$i$, $D(fg_i) \models \varphi(x_0)$ for some~$x_0 \in M[(fg_i)^{-1}]$}
\end{array} \]
The generic prime filter~$\fff_0$ can also be described in explicit
terms. For ring elements~$f$ and~$s$, $D(f) \models (s \in \fff_0)$ iff~$f
\in \sqrt{(s)}$.}
\jnote{2}{Our description of~$M^\sim$ reveals a precise sense in
which~$M^\sim$ and~$M$ are related: $M^\sim$ is simply a localization of~$M$
(first lifted to another universe by the constant sheaf construction). The
classical descriptions don't make the relation evident.
As a first approximation, the module~$M^\sim$ can be thought of as a
reification of all the stalks of~$M$ as a single object. The metatheorem
displayed at the top left on the next slides makes this precise and also
exposes the limits of this view: It is only correct for geometric sequents.
When considering nongeometric sequents, phenomena appear which are unique
to~$M^\sim$ in the sense that they are in general not shared by~$M$, its
stalks or its quotients.}
\jnote{3}{One can show, assuming that the little Zariski topos is
\emph{overt}, that the module~$M$ in~$\Set$ and the module~$\ull{M}$ of the
little Zariski topos share all first-order properties. This observation
explains the metatheorem displayed at the bottom left. The assumption is
satisfied if any element of~$A$ is nilpotent or not nilpotent, so it's always
satisfied if the law of excluded middle is available in the metatheory. In an
intuitionistic context, it's still ``morally satisfied''. Details are in
Section~12.9 of
\fixedhref{https://rawgit.com/iblech/internal-methods/master/notes.pdf}{these
notes}.
The metatheorem soups up a number of lemmas of algebraic geometry, there
stated in geometric language. For instance, if~$M$ is finitely generated,
then~$M^\sim$ is of finite type. If~$M$ is finitely presented, then~$M^\sim$
is of finite presentation. If~$M$ is coherent, then~$M^\sim$ is coherent.
As an aside, the little Zariski topos is rarely Boolean (validates the law of
excluded middle). A necessary condition is that~$A$ is of dimension~$\leq 0$.}
\jnote{4}{Assuming that~$A$ is reduced, the following nongeometric sequents
hold in the little Zariski topos (among others):
$A^\sim$ is a field in the sense that zero is the only noninvertible
element. This field property was already observed in the 1970s by Mulvey, who
didn't know a deeper reason for this property. We now know that it's a
shadow of an internal property whose external translation expresses
that~$A^\sim$ is quasicoherent.
$A^\sim$ has~$\neg\neg$-stable equality in the sense that
\[ \Spec(A) \models \forall s\?A^\sim\_ \neg\neg(s = 0) \Rightarrow s = 0. \]
Classically, every set has~$\neg\neg$-stable equality; intuitionistically,
this is a special property of some sets. It's quite useful, as some theorems
of classical commutative algebra can only be proven intuitionistically when
weakened by double negation. The stability then allows, in some cases, to
obtain the original conclusion.
$A^\sim$ is anonymously Noetherian in the sense that any of its ideals
is \mbox{\emph{not not}} finitely generated. A philosophically-motivated
constructivist might be offended by this notion, since it runs counter to the
maxim that constructive mathematics should be informative. However, in the
internal context it is a useful notion: Hilbert's basis theorem holds for it,
and we'll put it to good use in our proof of Grothendieck's generic freeness
lemma.}
\jnote{5}{Are there theorems which can only be proven using the internal
language and not be proven without?
No. Just as the translation from internal statements to external statements
is entirely mechanical, so is the translation from internal proofs to
external proofs. Any proof employing the internal language can be unwound to
yield an external proof not referencing the internal language.
However, depending on the logical complexity of the statements occurring in a
given proof, the resulting external proof might be (much) more complex than
the internal proof. This is particularly the case if the proof involves
double negation, for much the same reason as that in computer science,
continuations can twist the control flow in nontrivial ways which are
sometimes hard to understand. It is in these cases where we can extract the
most value of the internal language, unlocking notions and proofs which might
otherwise be hard to obtain.
The slide shows a specific example. The internal statement
that~$A^\sim[X_1,\ldots,X_n]$ is anonymously Noetherian is quite simple; its
external translation is quite convoluted.}
\pause
\only<2>{\begin{center}
\includegraphics[width=0.9\textwidth]{hartshorne-tilde-construction} \\
\footnotesize
Robin Hartshorne. Algebraic Geometry. 1977.
\end{center}}
\pause
\vspace*{-1.5em}
\begin{columns}
\begin{column}{0.48\textwidth}
\begin{varblock}{\textwidth}{}
\justifying
Assuming the Boolean prime ideal theorem, a geometric sequent
``$\forall \ldots \forall\_ (\cdots \Longrightarrow \cdots\!\,)$'',
where the two subformulas may not contain~``$\Rightarrow$'' and~``$\forall$'',
holds for~$M^\sim$ iff it holds for all stalks~$M_\ppp$.
\end{varblock}
\vspace*{-1.5em}
\begin{varblock}{\textwidth}{}
$M^\sim$ inherits any property of~$M$ which is \hil{localization-stable}.
\end{varblock}
\end{column}
\begin{column}{0.5\textwidth}
\vspace*{1.5em}
If $A$ is reduced ($x^n = 0 \Rightarrow x = 0$):
\vspace*{-1.0em}
\setbeamercolor{block body}{bg=red!30}
\setbeamercolor{structure}{fg=purple}
\begin{varblock}{\textwidth}{}
$A^\sim$ is a \hil{field}
(nonunits are zero).
$A^\sim$ has \hil{$\boldsymbol{\neg\neg}$-stable equality}.
\mbox{$A^\sim$ is \hil{anonymously Noetherian}.}\\[-1.2em]
\end{varblock}
\end{column}
\end{columns}
\visible<4-5>{\begin{tikzpicture}[overlay]
\draw[fill=white, draw=white, opacity=0.95] (-1,0) rectangle (\paperwidth,7.4);
\node[anchor=south west,inner sep=0] (image) at (0,0.8) {\vbox{
\only<4>{
\centering
\includegraphics[width=0.9\textwidth]{tierney-on-the-spectrum-of-a-ringed-topos} \\
\footnotesize
Miles Tierney. On the spectrum of a ringed topos. 1976.
}
\only<5>{
\begin{varblock}{\textwidth}{Complexity reduction}
The external meaning of
\[
\Spec(A) \models
\speak{$A^\sim[X_1,\ldots,X_n]$ is anonymously Noetherian}
\]
is:
\medskip
\begin{indentblock}
For any element~$f \in A$ and any (not necessarily quasicoherent) sheaf of
ideals~$\J \hookrightarrow A^\sim[X_1,\ldots,X_n]|_{D(f)}$: If
\begin{indentblock}
for any element~$g \in A$ the condition that
\begin{indentblock}
the sheaf~$\J$ is of finite type on~$D(g)$
\end{indentblock}
implies that~$g = 0$,
\end{indentblock}
then~$f = 0$.
\end{indentblock}
\end{varblock}
\vspace*{-2em}
}
}};
\end{tikzpicture}}
\end{frame}
\begin{frame}{Revisiting the test cases}
Let $A$ be a reduced ring.
\jnote{1}{This slide delivers on the promise made earlier: Using the internal
language of the little Zariski topos, we can reduce to the case of fields
without having to employ maximal ideals, prime ideals or minimal prime ideals.
Since the internal language machinery is itself constructive, the displayed
proofs can be unwound to yield external constructive proofs which don't
reference topos theory. Details on these external proofs can soon be found in
a forthcoming paper titled
\fixedhref{https://rawgit.com/iblech/internal-methods/master/paper-wlog.pdf}{Without
loss of generality, any reduced ring is a field}.}
\jnote{2}{The test case of Grothendieck's generic freeness lemma illustrates
that the internal language of toposes can help commutative algebra even if
one is not interested in constructivity issues. The previously known proofs
are somewhat long and somewhat convoluted; the new proof is arguably short
and simple.
Details on the internal proof are in Section~11.5 of
\fixedhref{https://rawgit.com/iblech/internal-methods/master/notes.pdf}{these
notes}. The
\fixedhref{https://arxiv.org/abs/1807.01231}{external
proof} obtained by unwinding the internal one is still quite direct, compared
to the previously published proofs, and interestingly follows a curious
course: It starts with verifying, in an inductive manner, that~$B$ and~$M$
are free; that~$A \to B$ is of finite presentation; and that~$M$ is finitely
presented as a~$B$-module. Then the assumption for~$f = 1$ is used, rendering
the prior steps moot, since over the zero ring any module is free and any
algebra is of finite presentation. External translations of internal proofs
which use double negation will always take such a course.}
\jnote{3}{Here's a rough sketch why the double negations occur. In
undergraduate linear algebra, we learn that any finitely generated vector
space is free (has a basis), by the following argument:
Let~$(v_1,\ldots,v_n)$ be a generating family. Either one of the generators can
be expressed as a linear combination of the others or not. In the latter
case, the family is linearly independent and we're done. In the former, we
remove the redundant generator and continue by induction.
This argument relies on the law of excluded middle and can therefore not put
to work in the internal universe as is. However, intuitionistically we do
have the weaker statement~$\neg\neg(\varphi \vee \neg\varphi)$, and we can
use this law in place of the law of excluded middle to intuitionistically
deduce that any finitely generated vector space does \emph{not not} have a
basis.}
\only<1>{\begin{columns}[t]
\begin{column}[t]{0.47\textwidth}
\centering
\scalebox{0.8}{$\begin{pmatrix}
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot
\end{pmatrix}$}
\vspace*{-1em}
\begin{varblock}{\textwidth}{A baby application}
\justifying
Let~$M$ be a surjective matrix over~$A$ with more rows than columns.
Then~$1 = 0$ in~$A$.
\end{varblock}
\justifying
\textbf{Proof.} The matrix is surjective over the field~$A^\sim$.
This is a contradiction to basic linear algebra. Hence $\Spec(A) \models
\bot$, thus $1 = 0$ in $A$.
\end{column}
\begin{column}[t]{0.47\textwidth}
\centering
\scalebox{0.8}{$\begin{pmatrix}
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot
\end{pmatrix}$}
\vspace*{-1em}
\begin{varblock}{\textwidth}{A child application}
\justifying
Let~$M$ be an injective matrix over~$A$ with more columns than rows.
Then~$1 = 0$ in~$A$.
\end{varblock}
\justifying
\textbf{Proof.} The matrix is injective over the field~$A^\sim$. This is
a contradiction to basic linear algebra. Hence $\Spec(A) \models \bot$,
thus $1 = 0$ in $A$.
\end{column}
\end{columns}}
\pause
\vspace*{-5.3em}\hspace*{21em}\begin{minipage}{3cm}
$\xymatrixcolsep{3.5pc}\xymatrixrowsep{1.2pc}\xymatrix{
& \ar@{-}[d]^{\substack{\text{finitely}\\\text{generated}}} M \\
A \ar[r]_{\text{of finite type}} & B
}$
\end{minipage}