-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathslides-bonn2024.tex
988 lines (857 loc) · 37.7 KB
/
slides-bonn2024.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
\documentclass[12pt,utf8,notheorems,compress,t,aspectratio=169]{beamer}
\usepackage{etex}
\usepackage{pgfpages}
\usepackage[export]{adjustbox}
% Workaround for the issue described at
% https://tex.stackexchange.com/questions/164406/beamer-using-href-in-notes.
\newcommand{\fixedhref}[2]{\makebox[0pt][l]{\hspace*{\paperwidth}\href{#1}{#2}}\href{#1}{#2}}
\usepackage[english]{babel}
\usepackage[normalem]{ulem}
\usepackage{mathtools}
\usepackage{booktabs}
\usepackage{stmaryrd}
\usepackage{amssymb}
\usepackage{manfnt}
\usepackage{array}
\usepackage{ragged2e}
\usepackage{multicol}
\usepackage{tabto}
\usepackage{xstring}
\usepackage{proof}
\usepackage[all]{xy}
\xyoption{rotate}
\usepackage{tikz}
\usetikzlibrary{calc,shapes,shapes.callouts,shapes.arrows,patterns,fit,backgrounds,decorations.pathmorphing,positioning,svg.path}
\hypersetup{colorlinks=true}
\newcommand*\circled[1]{\tikz[baseline=(char.base)]{%
\node[shape=circle,draw,inner sep=1pt] (char) {#1};}}
\DeclareFontFamily{U}{bbm}{}
\DeclareFontShape{U}{bbm}{m}{n}
{ <5> <6> <7> <8> <9> <10> <12> gen * bbm
<10.95> bbm10%
<14.4> bbm12%
<17.28><20.74><24.88> bbm17}{}
\DeclareFontShape{U}{bbm}{m}{sl}
{ <5> <6> <7> bbmsl8%
<8> <9> <10> <12> gen * bbmsl
<10.95> bbmsl10%
<14.4> <17.28> <20.74> <24.88> bbmsl12}{}
\DeclareFontShape{U}{bbm}{bx}{n}
{ <5> <6> <7> <8> <9> <10> <12> gen * bbmbx
<10.95> bbmbx10%
<14.4> <17.28> <20.74> <24.88> bbmbx12}{}
\DeclareFontShape{U}{bbm}{bx}{sl}
{ <5> <6> <7> <8> <9> <10> <10.95> <12> <14.4> <17.28>%
<20.74> <24.88> bbmbxsl10}{}
\DeclareFontShape{U}{bbm}{b}{n}
{ <5> <6> <7> <8> <9> <10> <10.95> <12> <14.4> <17.28>%
<20.74> <24.88> bbmb10}{}
\DeclareMathAlphabet{\mathbbm}{U}{bbm}{m}{n}
\SetMathAlphabet\mathbbm{bold}{U}{bbm}{bx}{n}
\usepackage{pifont}
\newcommand{\cmark}{\ding{51}}
\newcommand{\xmark}{\ding{55}}
\DeclareSymbolFont{extraup}{U}{zavm}{m}{n}
\DeclareMathSymbol{\varheart}{\mathalpha}{extraup}{86}
\graphicspath{{images/}}
\usepackage[protrusion=true,expansion=true]{microtype}
\setlength\parskip{\medskipamount}
\setlength\parindent{0pt}
\title{Constructive forcing}
\author{Ingo Blechschmidt}
\date{September 20th to September 16th, 2023}
%\setbeameroption{show notes on second screen=bottom}
\newcommand{\jnote}[2]{\only<#1>{\note{\setlength\parskip{\medskipamount}\footnotesize\justifying#2\par}}}
%\useinnertheme[shadow=true]
\setbeamerfont{block title}{size={}}
\useinnertheme{rectangles}
\usecolortheme{orchid}
\usecolortheme{seahorse}
\definecolor{mypurple}{RGB}{253,73,34}
\definecolor{mypurpledark}{RGB}{100,0,150}
\setbeamercolor{structure}{fg=mypurple}
\setbeamercolor*{title}{bg=mypurple,fg=white}
\setbeamercolor*{titlelike}{bg=mypurple,fg=white}
\setbeamercolor{frame}{bg=black}
\usefonttheme{serif}
\usepackage[T1]{fontenc}
\usepackage{libertine}
% lifted from https://arxiv.org/abs/1506.08870
\DeclareFontFamily{U}{min}{}
\DeclareFontShape{U}{min}{m}{n}{<-> udmj30}{}
\newcommand\yon{\!\text{\usefont{U}{min}{m}{n}\symbol{'210}}\!}
\newcommand{\A}{\mathcal{A}}
\newcommand{\B}{\mathcal{B}}
\newcommand{\C}{\mathcal{C}}
\newcommand{\M}{\mathcal{M}}
\renewcommand{\AA}{\mathbb{A}}
\newcommand{\BB}{\mathbb{B}}
\newcommand{\pp}{\mathbbm{p}}
\newcommand{\MM}{\mathbb{M}}
\newcommand{\E}{\mathcal{E}}
\newcommand{\F}{\mathcal{F}}
\newcommand{\FF}{\mathbb{F}}
\newcommand{\G}{\mathcal{G}}
\newcommand{\J}{\mathcal{J}}
\newcommand{\GG}{\mathbb{G}}
\renewcommand{\O}{\mathcal{O}}
\newcommand{\K}{\mathcal{K}}
\newcommand{\NN}{\mathbb{N}}
\newcommand{\QQ}{\mathbb{Q}}
\newcommand{\RR}{\mathbb{R}}
\newcommand{\TT}{\mathbb{T}}
\newcommand{\PP}{\mathbb{P}}
\newcommand{\ZZ}{\mathbb{Z}}
\newcommand{\CC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\newcommand{\aaa}{\mathfrak{a}}
\newcommand{\bbb}{\mathfrak{b}}
\newcommand{\ccc}{\mathfrak{c}}
\newcommand{\ppp}{\mathfrak{p}}
\newcommand{\fff}{\mathfrak{f}}
\newcommand{\mmm}{\mathfrak{m}}
\newcommand{\defeq}{\vcentcolon=}
\newcommand{\defeqv}{\vcentcolon\equiv}
\newcommand{\Cov}{\mathrm{Cov}}
\renewcommand{\_}{\mathpunct{.}}
\newcommand{\?}{\,{:}\,}
\newcommand{\speak}[1]{\ulcorner\text{\textnormal{#1}}\urcorner}
\newcommand{\inv}{inv.\@}
\newcommand{\forces}{\vDash}
\setbeamertemplate{blocks}[rounded][shadow=false]
\newenvironment{indentblock}{%
\list{}{\leftmargin\leftmargin}%
\item\relax
}{%
\endlist
}
% Adapted from https://latex.org/forum/viewtopic.php?t=2251 (Stefan Kottwitz)
\newenvironment<>{hilblock}{
\begin{center}
\begin{minipage}{9.05cm}
\setlength{\textwidth}{9.05cm}
\begin{actionenv}#1
\def\insertblocktitle{}
\par
\usebeamertemplate{block begin}}{
\par
\usebeamertemplate{block end}
\end{actionenv}
\end{minipage}
\end{center}}
\newenvironment{changemargin}[2]{%
\begin{list}{}{%
\setlength{\topsep}{0pt}%
\setlength{\leftmargin}{#1}%
\setlength{\rightmargin}{#2}%
\setlength{\listparindent}{\parindent}%
\setlength{\itemindent}{\parindent}%
\setlength{\parsep}{\parskip}%
}%
\item[]}{\end{list}}
\tikzset{
invisible/.style={opacity=0,text opacity=0},
visible on/.style={alt={#1{}{invisible}}},
alt/.code args={<#1>#2#3}{%
\alt<#1>{\pgfkeysalso{#2}}{\pgfkeysalso{#3}}}
}
% https://tex.stackexchange.com/questions/172336/drawing-roman-laurel-leaves-spqr-in-tikz
\tikzset{
laurel-wreath/.pic = {
\fill svg{M14.4-24.6c-1.5-1.5-2.6-3.3-3.1-5.3l-.4-1.7c-.2-1.1-.2-4.1 .2-5.7 .2-.9 .3-1.3 .5-1.3l1.4 1.1 2.5 2.4c2.7 2.5 5.2 6 5.8 8 .2 .6-.5 .3-2.2-.9-1.6-1.3-3.3-2.6-5-3.8l.1 1.4c.2 1.4 .5 2.7 1.1 4.6s.8 2.5 .5 2.5l-1.4-1.3zm69.6 1.1 .3-1.2c.8-2.3 1.3-4.8 1.6-7.3l-1.5 1.1c-1.3 .9-2.6 1.9-3.7 3-1.6 1.1-2 1.3-2.1 1 .7-1.8 1.6-3.4 2.8-4.9 1.3-1.7 6.5-6.8 7-6.8 .2 0 .3 .2 .3 .5l.3 1.6c.3 2.2 .2 5.7-.5 7.4-.8 1.9-1.6 3.1-3 4.7-1.1 1.1-1.4 1.3-1.5 .9z};
\fill svg{M10-29.4c-.8-1.1-1.4-2.2-2-4.1l-.7-3.5c-.2-3 .2-4.4 1.4-8.3l.5-1.4c.2-1.3 .3-1.9 .6-1.9 .3-.2 .6 .3 .7 .8s.9 2.2 1.9 3.6c1.4 2.2 2.7 4.4 3.9 6.6l.9 2.7c0 .6 0 .6-.3 .6-.6 0-4.9-4.4-5.8-6l-.2-.6-.1 1.7-.3 2.8c-.3 2.7-.3 3.8 0 5.5 .6 2 .5 2.4-.5 1.5zm79.2 .3 .4-2.4c.2-1.3 .2-2.7-.1-4.9l-.3-2.8v-1.6l-.7 1c-.8 1.3-5 5.5-5.5 5.5s-.5-.3 .2-1.9c.5-1.7 1.4-3.3 3.3-6.5 2.4-3.6 2.7-3.9 2.8-4.7 .5-1.3 .5-1.4 .8-1.2 .3 0 .6 .8 .6 1.5l.7 2.4c.9 2.7 1.1 3.6 1.2 6 .2 3.1-.5 6-2 8.2-.8 1.3-1.3 1.7-1.4 1.5z};
\fill svg{M5-40c-.4-3.2-.1-6.5 .9-9.6 .5-1.1 1.6-2.8 2.2-3.4l1.3-1.6 2-2.7 .2 .6c.1 1.3 .4 2.6 .9 3.8l.3 1c.8 1.7 1.1 2.7 1.6 5.3 .6 2.5 .6 4.6 .2 4.6-.3 0-.9-.8-1-1.1l-.5-.8c-1.4-2-3-5.2-2.9-6.5-.9 2.7-2 5.4-3.5 7.9l-.3 .8-.3 .8c0 .5-.6 1.6-.8 1.6l-.3-.7zm89.2 .2-.2-.5-.3-.9-1.1-2.7-1.1-2.4c-.6-1.4-1.2-2.8-1.6-4.2l-.3 .9c-.3 1.3-1.6 3.9-3 6-1.3 2-1.6 2-1.5 0s1.1-6.3 2.2-9c.8-1.7 1.1-3.1 .9-4.1-.2-1.1 .5-.8 2.2 1.8 3.3 4.4 3.8 5.4 4.4 7.8 .6 2.4 .5 7.7-.3 7.8l-.3-.5z};
\fill svg{M13.9-50.1c-.5-1.9-.8-3.9-.9-5.8-.2-1.6-.1-3.3 .1-4.9-.3 .8-1.7 2.5-4.2 5.1l-3 4.9-.3 .1c-.3 0-.3-2.2 0-3.3 .8-3 1.4-4.6 2.5-6.1 .9-1.3 1.7-1.9 2.5-2.5 1.1-.6 2.7-1.9 3.5-2.7 .9-.9 1.9-1.4 2.2-1.4v1.1l-.3 6.6c0 6.8 .2 6.3-1 8.9-.5 1.1-.8 1.1-1.1 0zm70.8-.4c-.8-2.2-.8-2.5-.7-6.3-.1-2.7-.1-5.5-.2-8.2-.3-1.6-.3-1.9 .5-1.6l.6 .5c1.4 1.4 3 2.5 3.9 3.1 1.3 .9 1.9 1.6 2.7 2.6l.6 .7 .2 .4 .2 .3c.8 .9 2 4.9 2 6.9 .2 1.9-.2 1.9-.9 .5-.7-1.4-1.5-2.7-2.6-4-1.6-1.5-3-3.2-4.2-5 .4 3 .3 6-.5 9 0 .8-.5 2.2-.8 2.3-.2 0-.5-.3-.8-1.2z};
\fill svg{M16.4-58.5l.2-1.5 .3-3.7c.2-2.8 .3-3.5 1.1-5.4l.7-1.3-.5 .4-1 .7c-.5 .4-1.1 .8-1.5 1.3l-.5 .3-1.9 1.6c-2.2 1.6-2.7 2-3.9 3.6-.5 .8-1.1 1.3-1.3 1.3-.5 0 0-2.4 1.1-4.7 1.5-3.4 4.3-6 7.7-7.4l1.3-.4 1.9-.4 2-.5c1.4 0 1.4 0 1 1.1-.5 .8-.8 2-1.1 4.2-.3 2.3-1.1 4.5-2.2 6.5l-.4 .6c-.6 1.1-1.3 2.1-2 3.2-.5 .6-.8 .8-1 .5zm66.3-.2c-.8-.9-2.8-4.4-3.5-6.1-.6-1.3-.9-2.5-1.1-3.5-.2-2.1-.7-4.1-1.5-6 0-.3 0-.3 1.2-.3l2.1 .5 1.9 .4 1.2 .4 .6 .1 1 .6c3 1.4 5.7 4.6 6.8 8.5l.7 2.6c-.2 .6-.5 .5-1.4-.7-2.2-2.7-4.8-5-7.7-6.9l-1.7-1.3 .6 1.3c.3 .6 .6 1.2 .8 1.9l.3 2.5 .3 3.9c.3 2.4 .2 2.8-.6};
\fill svg{M21.6-66.1l.4-1.1 .9-3.2c.3-1.9 1.1-3.3 2.4-4.7l.4-.8-1.2 .2-2.2 .3c-2.7 .3-5.3 1.2-7.7 2.5-.6 .5-1.3 .6-1.3 .3 0-.5 .9-1.9 2-2.9 .8-.9 2-1.9 3.2-2.6l.9-.4 2.2-1c.3-.2 1.3-.3 3.2-.1 3 0 4.1 .2 6.3 .7l1.1 .4c.5 .2 .6 .6 .3 .6-.5 0-1.4 .9-1.9 1.7l-1.2 1.8c-1.7 2.8-2.2 3.5-4.6 5.9l-3 2.7-.2-.3zm53.9-2c-2.7-2.8-3.5-3.8-5.4-6.8-.9-1.6-1.4-2.4-1.9-2.5l-.8-.5c-.3 0-.2-.5 .4-.6l1.1-.4c1.9-.6 3-.8 5.6-.9l3.3 .2c2 .6 3.8 1.5 5.4 2.8 .3 0 1.9 1.6 2.5 2.4l.9 1.8c0 .3-.3 .2-1.9-.6-2.8-1.4-4.4-1.9-7.7-2.2l-2.2-.5c-.9-.2-.9-.2-.6 .2 .6 .5 1.7 2 2.1 2.8l.9 2.5c.3 1.5 .6 3 .9 4.6l-2.6-2.3z};
\fill svg{M34.1-78.7c-3.4-1.3-6.9-2.1-10.6-2.5-.9 0-1.4 0-2.3 .3-2 .5-2 0 0-1.3l2.8-1.2c1.4-.5 1.9-.5 3.8-.6 3.8-.2 6.1 .3 9.3 1.7l3.6 1.1 2.2 .3c1.3 0 1.7 0 2.7-.3 1.1-.3 2.8-1.1 2.8-1.3l-1.3-.9c-1.9-1.4-3.1-2.7-3.1-3.2l.8-.6c.9-.3 1.3-.2 2 .8 .5 .8 1.1 1.4 2.9 2.7 .2 .3 .3 .2 1.1-.3 .9-.8 2.4-2 2.6-2.7 .5-.6 .9-.8 1.8-.5l.8 .6c0 .5-1.4 1.7-3.2 3.2l-1.3 .9c0 .2 1.7 .9 2.9 1.3 .9 .3 1.4 .3 2.7 .3l2.2-.3c1.7-.4 3.4-1 5-1.7 2-.8 4.4-1.3 7.7-1.1 2 .2 2.5 .2 3.8 .6 .9 .3 2.2 .8 2.8 1.2 2 1.1 2 1.6 .2 1.3-1.6-.3-1.9-.3-4.4 0-2.4 .3-4.7 .8-7 1.6l-1.5 .6c-2.9 .3-5.9 .2-8.8-.3-1.7-.3-3.6-.9-6-2.1l-1.1-.4-1.3 .6c-4.5 2.2-9.6 3-14.6 2.2zm-6.3-9.1c};
}
}
\newcommand{\pointthis}[3]{%
\tikz[remember picture,baseline]{
\node[anchor=base,inner sep=0,outer sep=0] (#2) {#2};
\node[visible on=#1,overlay,rectangle callout,rounded corners,callout relative pointer={(0.3cm,0.5cm)},fill=blue!20] at ($(#2.north)+(-0.1cm,-1.1cm)$) {#3};
}%
}
\tikzset{
invisible/.style={opacity=0,text opacity=0},
visible on/.style={alt={#1{}{invisible}}},
alt/.code args={<#1>#2#3}{%
\alt<#1>{\pgfkeysalso{#2}}{\pgfkeysalso{#3}}}
}
\newcommand{\hcancel}[5]{%
\tikz[baseline=(tocancel.base)]{
\node[inner sep=0pt,outer sep=0pt] (tocancel) {#1};
\draw[red!80, line width=0.4mm] ($(tocancel.south west)+(#2,#3)$) -- ($(tocancel.north east)+(#4,#5)$);
}%
}
\newcommand{\explain}[7]{%
\tikz[remember picture,baseline]{
\node[anchor=base,inner sep=2pt,outer sep=0,fill=#3,rounded corners] (label) {#1};
\node[anchor=north,visible on=<#2>,overlay,rectangle callout,rounded corners,callout
relative pointer={(0.0cm,0.5cm)+(0.0cm,#6)},fill=#3] at ($(label.south)+(0,-0.3cm)+(#4,#5)$) {#7};
}%
}
\newcommand{\explainstub}[2]{%
\tikz[remember picture,baseline]{
\node[anchor=base,inner sep=2pt,outer sep=0,fill=#2,rounded corners] (label) {#1};
}%
}
\newcommand{\squiggly}[1]{%
\tikz[remember picture,baseline]{
\node[anchor=base,inner sep=0,outer sep=0] (label) {#1};
\draw[thick,color=red!80,decoration={snake,amplitude=0.5pt,segment
length=3pt},decorate] ($(label.south west) + (0,-2pt)$) -- ($(label.south east) + (0,-2pt)$);
}%
}
% Adapted from https://latex.org/forum/viewtopic.php?t=2251 (Stefan Kottwitz)
\newenvironment<>{varblock}[2]{\begin{varblockextra}{#1}{#2}{}}{\end{varblockextra}}
\newenvironment<>{varblockextra}[3]{
\begin{center}
\begin{minipage}{#1}
\begin{actionenv}#4
{\centering \hil{#2}\par}
\def\insertblocktitle{}%\centering #2}
\def\varblockextraend{#3}
\usebeamertemplate{block begin}}{
\par
\usebeamertemplate{block end}
\varblockextraend
\end{actionenv}
\end{minipage}
\end{center}}
\setbeamertemplate{headline}{}
\setbeamertemplate{frametitle}{%
\leavevmode%
\vskip-1.6em%
\begin{beamercolorbox}[dp=1ex,center,wd=\paperwidth,ht=2.25ex]{title}%
\vskip0.5em%
\bf\insertframetitle
\end{beamercolorbox}%
\vskip-0.77em\hspace*{-2em}%
\textcolor{mypurpledark}{\rule[0em]{1.1\paperwidth}{2.4pt}}
\vskip-0.4em%
}
\setbeamertemplate{navigation symbols}{}
\newcounter{framenumberpreappendix}
\newcommand{\backupstart}{
\setcounter{framenumberpreappendix}{\value{framenumber}}
}
\newcommand{\backupend}{
\addtocounter{framenumberpreappendix}{-\value{framenumber}}
\addtocounter{framenumber}{\value{framenumberpreappendix}}
}
\newcommand{\insertframeextra}{}
\setbeamertemplate{footline}{%
\begin{beamercolorbox}[wd=\paperwidth,ht=2.25ex,dp=1ex,right,rightskip=1mm,leftskip=1mm]{}%
% \inserttitle
\hfill
\insertframenumber\insertframeextra\,/\,\inserttotalframenumber
\end{beamercolorbox}%
\vskip0pt%
}
\newcommand{\hil}[1]{{\usebeamercolor[fg]{item}{\textbf{#1}}}}
\newcommand{\hill}[1]{{\usebeamercolor[fg]{item}{#1}}}
\newcommand{\bad}[1]{\textcolor{red!90}{\textnormal{#1}}}
\newcommand{\good}[1]{\textcolor{mypurple}{\textnormal{#1}}}
\newcommand{\bignumber}[1]{%
\renewcommand{\insertenumlabel}{#1}\scalebox{1.2}{\!\usebeamertemplate{enumerate item}\!}
}
\newcommand{\normalnumber}[1]{%
{\renewcommand{\insertenumlabel}{#1}\!\usebeamertemplate{enumerate item}\!}
}
\newcommand{\bigheart}{\includegraphics{heart}}
\newcommand{\subhead}[1]{{\centering\textcolor{gray}{\hrulefill}\quad\textnormal{#1}\quad\textcolor{gray}{\hrulefill}\par}}
\newcommand{\badbox}[1]{\colorbox{red!30}{#1}}
\newcommand{\infobox}[1]{\colorbox{yellow!70}{\color{black}#1}}
% taken from JDH "The modal logic of arithmetic potentialism and the universal algorithm"
\DeclareMathOperator{\possible}{\text{\tikz[scale=.6ex/1cm,baseline=-.6ex,rotate=45,line width=.1ex]{\draw (-1,-1) rectangle (1,1);}}}
\DeclareMathOperator{\necessary}{\text{\tikz[scale=.6ex/1cm,baseline=-.6ex,line width=.1ex]{\draw (-1,-1) rectangle (1,1);}}}
\DeclareMathOperator{\xpossible}{\text{\tikz[scale=.6ex/1cm,baseline=-.6ex,rotate=45,line width=.1ex]{\draw (-1,-1) rectangle (1,1); \draw[very thin] (-.6,-.6) rectangle (.6,.6);}}}
\DeclareMathOperator{\xnecessary}{\text{\tikz[scale=.6ex/1cm,baseline=-.6ex,line width=.1ex]{\draw (-1,-1) rectangle (1,1); \draw[very thin] (-.6,-.6) rectangle (.6,.6);}}}
\input{images/primes.tex}
\newcommand{\triang}{\hil{$\blacktriangleright$}}
\newcommand{\concat}{\mathbin{{+}\mspace{-8mu}{+}}}
\newcommand{\astikznode}[2]{\tikz[baseline,remember picture]{\node[anchor=base,inner sep=0,outer sep=0.1em] (#1) {#2};}}
\newcommand{\astikznodecircled}[3]{\tikz[baseline,remember picture]{\node[anchor=base,circle,draw=#2,thick,inner sep=0,outer sep=0.05em] (#1) {#3};}}
\newcommand{\astikznodetransparentlycircled}[2]{\tikz[baseline,remember picture]{\node[anchor=base,circle,opacity=0,draw=white,text opacity=1,thick,inner sep=0,outer sep=0.05em] (#1) {#2};}}
\setbeamersize{text margin left=1.60em,text margin right=1.60em}
\newlength\stextwidth
\newcommand\makesamewidth[3][c]{%
\settowidth{\stextwidth}{#2}%
\makebox[\stextwidth][#1]{#3}%
}
\begin{document}
\addtocounter{framenumber}{-1}
{\usebackgroundtemplate{\begin{minipage}{\paperwidth}\includegraphics[width=\paperwidth]{swansea-bay}\end{minipage}}
\begin{frame}[c]
\centering
\bigskip
\includegraphics[height=0.32\textwidth]{phantoms}
\bigskip
\bigskip
\bigskip
\color{white}
\begin{tikzpicture}
\def\R{8pt}
\node (title) {\phantom{qquad}\textcolor{white}{Maximal ideals in commutative algebra as convenient fictions}\phantom{qquad}};
\begin{pgfonlayer}{background}
\draw[decorate, very thick, draw=white]
($(title.south west) + (\R, 0)$) arc(270:180:\R) --
($(title.north west) + (0, -\R)$) arc(180:90:\R) --
($(title.north east) + (-\R, 0)$) arc(90:0:\R) --
($(title.south east) + (0, \R)$) arc(0:-90:\R) --
cycle;
\end{pgfonlayer}
\end{tikzpicture}
\scriptsize
\textit{-- an invitation --}
\bigskip
%(Agda formalization available)
%\bigskip
Bonn Constructive Algebra Seminar \\
July 22th, 2024
\ \\
\bigskip
\bigskip
\bigskip
\begin{columns}
\begin{column}{0.4\textwidth}
\centering
Ingo Blechschmidt \\
University of Augsburg
\end{column}
\begin{column}{0.4\textwidth}
\centering
Peter Schuster \\
University of Verona
\end{column}
\end{columns}
\par
\end{frame}}
\definecolor{mypurple}{RGB}{150,0,255}
\setbeamercolor{structure}{fg=mypurple}
\begin{frame}
\begin{center}\includegraphics[width=0.2\textwidth]{eigenvector}\end{center}
Let a continuous family of symmetric matrices be given:
\[
\begin{pmatrix}a_{11}(t)&\cdots&a_{1n}(t)\\\vdots&&\vdots\\a_{n1}(t)&\cdots&a_{nn}(t)\end{pmatrix}
\]
Then for every parameter value~$t \in \Omega$, classically there is
\hil{$\blacktriangleright$} a full list of eigenvalues~$\lambda_1(t),\ldots,\lambda_n(t)$ and \\
\hil{$\blacktriangleright$} an eigenvector basis~$(v_1(t),\ldots,v_n(t))$.
\bigskip
\begin{columns}[c]
\begin{column}{0.01\textwidth}
\includegraphics[height=2.4em]{question-mark}
\end{column}
\begin{column}{0.9\textwidth}
\mbox{Can locally the functions~$\lambda_i$ be chosen to be continuous?
\only<2->{\hil{Yes.}}} \\
How about the~$v_i$? \only<2->{\hil{No}\only<3->{, but \hil{yes} on a dense
open subset of~$\Omega$.}}
\end{column}
\end{columns}
\end{frame}
{\usebackgroundtemplate{\begin{minipage}{\paperwidth}\vspace*{5.95cm}\includegraphics[width=\paperwidth]{fr1}\end{minipage}}
\begin{frame}{Maximal ideals}
\only<1-7>{\textbf{Thm.}
Let~$M$ be a surjective matrix with more rows than columns over a
ring~$A$. Then~$1 = 0$ in~$A$.
\visible<2->{\emph{Proof.} \bad{Assume not.}}
\visible<3->{Then there is~a \bad{maximal ideal} $\mmm$.}
\visible<5->{The matrix is surjective over~$A/\mmm$.}
\visible<6->{Since~$A/\mmm$ is a field, this is a contradiction to basic linear algebra.\qed}}
\only<4-7>{\bigskip\par\centering\scalebox{0.9}{\centering\begin{tikzpicture}
\node (0) at (0,1) {$(0) = \{0\}$};
\node (1) at (0,5) {$(1) = \ZZ$};
\node (2) at (-2,4) {$(2)$};
\node [right of=2] (3) {$(3)$};
\node [below of=2] (4) {$(4)$};
\node [below of=2, xshift=0.7cm] (6) {$(6)$};
\node [right of=3] (5) {$(5)$};
\node [right of=5] (7) {$(7)$};
\node [right of=7] (7d) {$\ldots$\phantom{(}};
\node [right of=7d, xshift=3cm, yshift=-2cm] (max)
{\vbox{\small{\it maximal among the proper ideals} \\ \medskip \hspace*{-6.75em}\textbullet \quad $\neg(1 \in
\mmm)$ \\ \medskip \textbullet \quad $\neg\bigl(1 \in \mmm + (x)\bigr) \Rightarrow x \in \mmm$}};
\node [below of=4] (8) {$(8)$};
\node [right of=8, xshift=3cm] (8d) {$\ldots$};
\draw (0) -- (8);
\draw (0) -- (8d);
\draw (0) -- (6);
\draw (2) -- (1);
\draw (3) -- (1);
\draw (5) -- (1);
\draw (7) -- (1);
\draw (7d) -- (1);
\draw (4) -- (2);
\draw (8) -- (4);
\draw (6) -- (2);
\draw (6) -- (3);
\draw [mypurple!30, thick, shorten <=-2pt, shorten >=-2pt, ->] (max) to [out=120, in=-30] (7d);
\begin{pgfonlayer}{background}
\draw[decorate, very thick, draw=mypurple!30]
($(2.south west) + (8pt, 0)$) arc(270:180:8pt) --
($(2.north west) + (0, -8pt)$) arc(180:90:8pt) --
($(7d.north east) + (-8pt, 0)$) arc(90:0:8pt) --
($(7d.south east) + (0, 8pt)$) arc(0:-90:8pt) --
cycle;
\end{pgfonlayer}
\end{tikzpicture}\par}\par}
\pause
\pause
\pause
\pause
\pause
\pause
\medskip
\raggedright
Let~$A$ be a ring. \emph{Does there exist a maximal ideal~$\mmm \subseteq A$?}
\pause
\begin{enumerate}
\item \good{Yes}, if \bad{Zorn's lemma} is available.
\bigskip
\pause
\item \good{Yes}, if~$A$ is countable and membership of finitely generated ideals is decidable:
{\footnotesize
Let~$A = \{ x_0, x_1, \ldots \}$. Then set:
\begin{align*}
\mmm_0 &\defeq \{ 0 \}, &
\mmm_{n+1} &\defeq \begin{cases}
\mmm_n + (x_n), & \text{if $1 \not\in \mmm_n + (x_n)$}, {\qquad\quad\quad\!\!}\\
\mmm_n, & \text{else.}
\end{cases}
\end{align*}}
\pause
\item \good{Yes}, if~$A$ is countable (irrespective of membership decidability):
{\footnotesize\begin{align*}
\mmm_0 &\defeq \{ 0 \}, &
\mmm_{n+1} &\defeq \mmm_n + (\underbrace{\{ x \in A \,|\, x = x_n \wedge
1 \not\in \mmm_n + (x_n) \}}_{\text{a certain subsingleton set}})
\end{align*}}
\vspace*{3.5em}
\visible<11>{{
\centering
\raisebox{0pt}[0pt][0pt]{
\hspace*{2.5em}
\scalebox{0.9}{\begin{tikzpicture}
\node (inner) at (17.3mm,-20mm) {\textit{``a bad joke''}};
\path (0,0) pic{laurel-wreath};
\end{tikzpicture}}
\hspace*{-3em}
\scalebox{0.9}{\begin{tikzpicture}
\node (inner) at (17.5mm,-18mm) {\vbox{\small\centering\textit{``non- \\informative''}}};
\path (0,0) pic{laurel-wreath};
\end{tikzpicture}}
}
\par
}}
\pause
\pause
\vspace*{-3.5em}
\item In the general case: \bad{No}\pause, but \good{yes} in a \emph{suitable forcing extension}\pause, and \\
\emph{bounded first-order consequences} of its existence there \good{do hold} in
the base universe.
\end{enumerate}
\end{frame}
\begin{frame}{Maximal ideals}
\textbf{Thm.}
Let~$M$ be a surjective matrix with more rows than columns over a
ring~$A$. Then~$1 = 0$ in~$A$.
\emph{Proof (classical).} \bad{Assume not.}
Then there is~a \bad{maximal ideal} $\mmm$.
The matrix is surjective over~$A/\mmm$.
Since~$A/\mmm$ is a field, this is a contradiction to basic linear algebra.\qed
\pause
\emph{Proof (constructive, special case).} Write~$M =
\left(\begin{smallmatrix}x\\y\end{smallmatrix}\right)$. By surjectivity,
we have~$u, v \in A$ with
\[
u \left(\begin{smallmatrix}x\\y\end{smallmatrix}\right) = \left(\begin{smallmatrix}1\\0\end{smallmatrix}\right)
\quad\text{and}\quad
v \left(\begin{smallmatrix}x\\y\end{smallmatrix}\right) = \left(\begin{smallmatrix}0\\1\end{smallmatrix}\right).
\]
Hence
$
1 = (vy) (ux) = (uy) (vx) = 0
$. \qed
\bigskip
\centering
\colorbox{white!20}{\emph{Abstract proofs should be blueprints for concrete ones.}}
\end{frame}}
{\usebackgroundtemplate{\begin{minipage}{\paperwidth}\includegraphics[height=\paperheight]{sea-of-clouds-2}\end{minipage}}
\begin{frame}{Noetherian conditions}
\begin{itemize}
\item ``Every ideal is finitely generated.''
\medskip\pause
---\emph{What about $\{ x \in \ZZ \,|\, x = 0 \vee \varphi \} \subseteq \ZZ$?}
\pause
\bigskip
\item ``Every ascending chain of finitely generated ideals stabilizes,
i.\@e. given~$\aaa_0 \subseteq \aaa_1 \subseteq \ldots$, there is a
number~$n$ such that~$\aaa_n = \aaa_{n+1} = \aaa_{n+2} = \ldots$.''
\medskip\pause
---\emph{Even descending sequences of natural numbers might fail to
stabilize.}
\pause\bigskip
\item ``Every ascending chain of finitely generated ideals stalls,
i.\@e. given~$\aaa_0 \subseteq \aaa_1 \subseteq \ldots$, there is a
number~$n$ such that~$\aaa_n = \aaa_{n+1}$.''
\medskip\pause
---\emph{There might not be enough such chains.}
\pause\bigskip
\item ``Every infinite sequence of ring elements is good,
i.\@e. given~$x_0, x_1, \ldots$, there is a number~$n$ such that~$x_n \in
(x_0,\ldots,x_{n-1})$.''
\medskip\pause
---\emph{There might not be enough such sequences.}
\end{itemize}
\end{frame}}
{\usebackgroundtemplate{\begin{minipage}{\paperwidth}\includegraphics[height=\paperheight]{sea-of-clouds-2}\end{minipage}}
\begin{frame}{Infinite data}
\vspace*{-1em}
\[ \astikznodetransparentlycircled{xm}{7}\!,
\quad \astikznodetransparentlycircled{x0}{4}\!,
\quad \only<1-2>{\astikznodetransparentlycircled{t1}{3}}\only<3->{\astikznodecircled{t1}{mypurple}{3}}\!,
\quad \only<1>{\ldots}\pause \astikznodetransparentlycircled{x1}{1}\!,
\quad \only<2>{\ldots}\pause \astikznodecircled{t2}{mypurple}{8}\!,
\quad \only<3>{\ldots} \visible<4->{\astikznodetransparentlycircled{x2}{2}\!,}
\quad \only<4->{\ldots} \]
{\centering\begin{tikzpicture}[remember picture,overlay]
\node[draw=mypurple, circle, thick, inner sep=0.1em] (t3) {\scriptsize$\leq$};
\path[draw=mypurple,thick]
(t1)
to [out=-90, in=180] (t3)
to [out=0, in=-90] (t2);
\end{tikzpicture}\par}
\medskip
\pause
\textbf{Thm.} Every sequence~$\alpha : \NN \to \NN$ is \hil{good} in that
there exist~$i < j$ with~$\alpha(i) \leq \alpha(j)$.
\pause
\emph{Proof.} \emph{(offensive?)} By~\badbox{\textsc{lem}}, there is a
minimum~$\alpha(i)$.
Set~$j \defeq i + 1$. \qed\par
\pause
\medskip
\textbf{Def.} A preorder~$X$ is \hil{well\only<9->{$^\star$}} iff every sequence~$\NN \to X$ is good.
\textbf{Examples.} $(\NN,{\leq}),\ \
\color{white}\only<7->{\color{red!90}}\astikznode{onlyclass}{$\underbrace{\color{black}X \times Y,\ \ X^*,\ \ \mathrm{Tree}(X)}_{\text{\visible<7->{\bad{only classically}}}}$}$.
\pause
\pause
\medskip
\begin{tikzpicture}[remember picture,overlay]
\node[thick, fill=black, rectangle, inner sep=0.3em, right=2em of onlyclass] (moral) {
\begin{minipage}{6cm}
\begin{columns}
\begin{column}{0.15\textwidth}
\hspace*{1.0em}\color{white}\dbend
\end{column}
\begin{column}{0.95\textwidth}
\color{white}\footnotesize
\it Don't quantify over points of spaces which might not have enough.
\end{column}
\end{columns}
\end{minipage}
};
\path[draw=red!90,thick,-stealth]
(moral) to
[out=180, in=-00] (onlyclass.east);
\end{tikzpicture}
\pause
\textbf{Def.} A preorder is \hil{well} iff any of the following equivalent
conditions hold:
\begin{enumerate}
\item The \hil{generic sequence} $\NN \to X$ is good.
\pause
\item Every sequence $\NN \to X$ \hil{in every forcing extension} is good.
\pause
\item There is a \hil{well-founded tree} witnessing universal goodness.
\end{enumerate}
% $\mathsf{Good}\,[\sigma_1,\ldots,\sigma_n] \defeqv (\exists(i < j)\_ \sigma_i \leq \sigma_j)$.
% \textbf{Def.} For a predicate~$P$ on finite lists over a set~$X$, inductively
% define:
% \[
% \infer{P \,|\, \sigma}{P\sigma}
% \qquad
% \infer{P \,|\, \sigma}{\forall(x \in X)\_\ P \,|\, \sigma x}
% \]
%
% \textbf{Def.} A preorder is \hil{well} iff~$\mathsf{Good} \,|\, [\,]$, where
% $\mathsf{Good}\,[\sigma_1,\ldots,\sigma_n] \defeqv (\exists(i < j)\_ \sigma_i \leq \sigma_j)$.
\end{frame}}
\section{Basics of forcing}
\begin{frame}{Ingredients for forcing}
To construct a forcing extension, we require:
\begin{enumerate}
\item a base universe~$V$
\item a preorder~$L$ of \hil{forcing conditions} in~$V$\!,
pictured as \hil{finite approximations}
(\emph{convention:} $\tau \preccurlyeq \sigma$ means that~$\tau$ is a
better finite approximation than~$\sigma$)
\item a \hil{covering system} governing how finite approximations evolve to
better ones
(for each~$\sigma \in L$, a set~$\Cov(\sigma) \subseteq
P({\downarrow}\sigma)$, with a simulation condition)
\end{enumerate}
In the forcing extension~$V^\nabla$, there will then be a \hil{generic filter} (ideal
object).
\pause
\vspace*{-1em}
\begin{columns}
\begin{column}{0.49\textwidth}
\small
\begin{block}{For the generic surjection~$\NN \twoheadrightarrow X$}
\justifying
Use \hil{finite lists}~$\sigma \in X^*$ as forcing conditions,
where $\tau \preccurlyeq \sigma$ iff~$\sigma$ is an initial segment of~$\tau$,
and be prepared to grow~$\sigma$ to \ldots
\footnotesize
\begin{enumerate}
\item[(a)] one of~$\{ \sigma x \,|\, x \in X \}$, to make~$\sigma$ more defined
\item[(b)] one of~$\{ \sigma \tau \,|\, \tau \in X^*, a \in
\sigma\tau \}$, for any~$a \in X$, to make~$\sigma$ more surjective
\end{enumerate}
\end{block}
\end{column}
\pause
\begin{column}{0.45\textwidth}
\small
\begin{block}{For the generic prime ideal of a ring~$A$}
\justifying
Use \hil{f.g.\@ ideals} as forcing conditions, where $\bbb \preccurlyeq
\aaa$ iff~$\bbb \supseteq \aaa$, and be prepared to grow~$\aaa$ to \ldots
\footnotesize
\begin{enumerate}
\item[(a)] one of~$\emptyset$, if~$1 \in \aaa$, to make~$\aaa$ more proper
\item[(b)] one of~$\{ \aaa+(x), \aaa+(y) \}$, if~$xy \in \aaa$, to
make~$\aaa$ more prime
\end{enumerate}
\end{block}
\end{column}
\end{columns}
\end{frame}
{\usebackgroundtemplate{\begin{minipage}{\paperwidth}\vspace*{-1cm}\includegraphics[width=\paperwidth]{forest-light-colored}\end{minipage}}
\begin{frame}{The eventually monad}
Let~$L$ be a forcing notion.
Let~$P$ be a monotone predicate on~$L$
(if $\tau \preccurlyeq \sigma$, then $P\sigma \Rightarrow P\tau$). \\
For instance, in the case~$L = X^*$:
\begin{itemize}
\item $\mathsf{Repeats}\, x_0\ldots x_{n-1} \defeqv \exists i\_ \exists j\_ i < j \wedge x_i = x_j$
\item $\mathsf{Good}\, \,\,\,\,\,\,x_0\ldots x_{n-1} \defeqv \exists i\_ \exists j\_ i < j \wedge x_i \leq x_j$
\quad (for some preorder~$\leq$ on~$X$)
\end{itemize}
\pause
We then define~``\hil{$P \mid \sigma$}'' (``$P$ bars~$\sigma$'') inductively by the following clauses:
\begin{enumerate}
\item If~$P\sigma$, then~$P \mid \sigma$.
\item If~$P \mid \tau$ for all~$\tau \in R$, where~$R$ is some covering
of~$\sigma$, then~$P \mid \sigma$.
\end{enumerate}
So~$P \mid \sigma$ expresses in a \hil{direct inductive fashion}:
\[ \text{``No matter
how~$\sigma$ evolves to a better approximation~$\tau$, eventually~$P\tau$
will hold.''} \]
\pause
We use quantifier-like notation: ``$\nabla(\tau \preccurlyeq \sigma)\_
P\tau$'' means ``$P \mid \sigma$''.
\end{frame}}
% BOARD:
% - examples for P | σ
% - abuse of notation
\begin{frame}{Proof translations}
\textbf{Thm.} Every~\textsc{iqc}-proof remains correct, with at most a
polynomial increase in length, if throughout we
replace
\[\begin{array}{rcl@{\quad\text{where}\quad}rcl}
\exists & \leadsto & \exists^\mathrm{cl},
& \exists^\mathrm{cl} &\defeqv& \neg\neg\exists, \\
\vee & \leadsto & \vee^\mathrm{cl},
& \alpha \vee^\mathrm{cl} \beta &\defeqv& \neg\neg(\alpha \vee \beta), \\
= & \leadsto & =^\mathrm{cl},
& s =^\mathrm{cl} t &\defeqv& \neg\neg(s = t).
\end{array} \]
\pause
\begin{columns}[c]
\begin{column}{0.01\textwidth}
\includegraphics[height=2.4em]{sheafification-man-2}
\end{column}
\quad
\begin{column}{0.9\textwidth}
\hil{When we say:}\ \ some statement ``holds in~$V^{\neg\neg}$'', \\
\makesamewidth[l]{\hil{When we say:}}{\hil{we mean:}}\ \ its translation holds in~$V$.
\end{column}
\end{columns}
\bigskip
Similarly for arbitrary forcing extensions~$V^\nabla$, ``just with~$\nabla$
instead of~$\neg\neg$''.
\bigskip
\pause
\textbf{Ex.} As~$\neg\neg(\varphi \vee \neg\varphi)$ is a theorem
of~\textsc{iqc}, the law of excluded middle holds in~$V^{\neg\neg}$.
\end{frame}
\newcommand{\defeqvi}{\quad iff\quad}
\begin{frame}{The $\nabla$-translation}
\small
\only<1>{For bounded first-order formulas over the (large) first-order signature which has
\begin{enumerate}
\scriptsize
\item one sort~$\underline{X}$ for each set~$X$ in the base universe,
\\[-1.2em]
\item one~$n$-ary function symbol~$\underline{f} : \underline{X_1} \times
\cdots \times \underline{X_n} \to \underline{Y}$ for each map~$f : X_1 \times
\cdots \times X_n \to Y$,
\\[-1.2em]
\item one~$n$-ary relation symbol~$\underline{R} \hookrightarrow
\underline{X_1} \times \cdots \times \underline{X_n}$ for each relation~$R
\subseteq X_1 \times \cdots \times X_n$, and
\\[-1.2em]
\item an additional unary relation symbol~$G \hookrightarrow \underline{L}$
(for the \emph{generic filter} of~$L$),
\end{enumerate}
we recursively define:}
\scriptsize
\only<2->{\vspace*{-0.4em}}
\begin{tabbing}
\quad \= $\sigma \forces \forces \forall(x\?\underline{X})\_ \varphi$ \=
\defeqvi $\textcolor{gray}{\forall(\tau \preccurlyeq \sigma)\_}\
\forall(x_0 \in X)\_ \tau \forces \varphi[\underline{x_0}/x]$.\qquad\quad \=
$\sigma \forces \exists(x\?\underline{X})\_ \varphi$
\= $\sigma \forces \underline{R}(\underline{s_1},\ldots,\underline{s_n})$ \= \defeqvi $s = t$. \= \kill
\> $\sigma \forces s = t$
\> \defeqvi $\nabla \sigma\_ \llbracket s \rrbracket = \llbracket t \rrbracket$.
\> $\sigma \forces \underline{R}(s_1,\ldots,s_n)$
\> \defeqvi $\nabla\sigma\_ R(\llbracket s_1 \rrbracket,\ldots,\llbracket s_n \rrbracket)$. \\[0.3em]
\> $\sigma \forces \varphi \Rightarrow \psi$
\> \defeqvi $\textcolor{gray}{\forall(\tau \preccurlyeq \sigma)\_}\ (\tau \forces \varphi) \Rightarrow
(\tau \forces \psi)$.
\> $\sigma \forces G\tau$
\> \defeqvi $\nabla\sigma\_ \sigma \preccurlyeq \llbracket\tau\rrbracket$. \\[0.3em]
\> $\sigma \forces \top$ \> \defeqvi $\top$.
\> $\sigma \forces \bot$ \> \defeqvi $\hil{$\nabla\sigma\_$}\ \bot$ \\[0.3em]
\> $\sigma \forces \varphi \wedge \psi$
\> \defeqvi $(\sigma \forces \varphi) \wedge (\sigma \forces \psi)$.
\> $\sigma \forces \varphi \vee \psi$
\> \defeqvi $\hil{$\nabla\sigma\_$}\ (\sigma \forces \varphi) \vee (\sigma \forces \psi)$. \\[0.3em]
\> $\sigma \forces \forall(x\?\underline{X})\_ \varphi$
\> \defeqvi $\textcolor{gray}{\forall(\tau \preccurlyeq \sigma)\_}\ \forall(x_0 \in X)\_ \tau \forces
\varphi[\underline{x_0}/x]$.
\> $\sigma \forces \exists(x\?\underline{X})\_ \varphi$
\> \defeqvi $\hil{$\nabla\sigma\_$}\ \exists(x_0 \in X)\_ \sigma \forces \varphi[\underline{x_0}/x]$.
\end{tabbing}
\small
\only<1>{Finally, we say that~$\varphi$ ``holds in~$V^\nabla$'' iff for all~$\sigma
\in L$, $\sigma \forces \varphi$.}
\footnotesize
\begin{tabular}{@{}lp{0.27\textwidth}p{0.48\textwidth}@{}}
\toprule
forcing notion & statement about~$V^\nabla$ & external meaning \\
\midrule
surjection $\NN \twoheadrightarrow X$ &
``the gen.\@ surj.\@ is surjective'' &
$\forall(\sigma{\in}X^*)\_ \forall(a{\in}X)\_ \nabla(\tau{\preccurlyeq}\sigma)\_ \exists(n{\in}\NN)\_ \tau[n] = a$. \\[0.4em]
\pause
map $\NN \to X$ &
``the gen.\@ sequence is good'' &
$\mathsf{Good} \mid [\,]$. \\[0.4em]
frame of opens &
``every complex number has a square root'' &
For every open~$U \subseteq X$ and every cont.\@
function $f : U \to \CC$, there is an open covering $U = \bigcup_i U_i$ such
that for each index~$i$, there is a cont.\@ function $g : U_i \to \CC$
such that~$g^2 = f$. \\[4.3em]
big Zariski &
``$x \neq 0 \Rightarrow \text{$x$ inv.}$'' &
If the only f.p.\@ $k$-algebra in which~$x = 0$ is the zero algebra,
then~$x$ is invertible in~$k$.\\[1.5em]
\pause
little Zariski &
``every f.g. vector space does \emph{not not} have a basis'' &
\makesamewidth[l]{}{\phantom{x}}\hil{Grothendieck's generic freeness lemma}
\end{tabular}
\end{frame}
\begin{frame}{Outlook}
\begin{block}{Passing to and from extensions}
\justifying\small
\textbf{Thm.} Let~$\varphi$ be a \hil{bounded first-order formula} not
mentioning~$G$. In each of the following situations, we have that
$\varphi$ holds in~$V^\nabla$ iff~$\varphi$
holds in $V$:
\vspace*{-0.5em}
\begin{enumerate}
\item $L$ and all coverings are inhabited (proximality). \\[-1em]
\item $L$ contains a top element, every covering of the
top element is inhabited, and~$\varphi$ is a coherent implication
(positivity).
\end{enumerate}
\end{block}
\vspace*{-1em}
\begin{columns}
\begin{column}{0.46\textwidth}
\begin{block}{The mystery of nongeometric sequents}
\justifying
The \hil{generic ideal} of a ring is maximal:
\vspace*{-1em}
\[ (x \in \aaa \Rightarrow 1 \in \aaa) \Longrightarrow 1 \in \aaa + (x). \]
The \hil{generic ring} is a field:
\vspace*{-0.7em}
\[ (x = 0 \Rightarrow 1 = 0) \Longrightarrow (\exists y\_ xy = 1). \]
\end{block}
\end{column}
\begin{column}{0.50\textwidth}
\begin{block}{Traveling the multiverse \ldots}
\textsc{lem} is a \hil{switch} and \hil{holds positively};
being countable is a \hil{button}.
\medskip
Every instance of \textsc{dc} \hil{holds proximally}.
\medskip
A geometric implication is provable iff it holds \hil{everywhere}.
\end{block}
\vspace*{-0.3em}
\hfill\footnotesize\ldots{} upwards, but always keeping ties to the
base.{\ }
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Formalities}
\small
\textbf{Def.} A \hil{forcing notion} consists of
a preorder~$L$ of \hil{forcing conditions}, and
for every~$\sigma \in L$, a set~$\Cov(\sigma) \subseteq
P({\downarrow}\sigma)$ of \hil{coverings} of~$\sigma$
such that: If~$\tau \preccurlyeq \sigma$ and~$R \in \Cov(\sigma)$, there
should be a covering~$S \in \Cov(\tau)$ such that~$S \subseteq
{\downarrow}R$.
\bigskip
{\centering\footnotesize\begin{tabular}{llll}
\toprule
& preorder~$L$ & coverings of an element~$\sigma \in L$ & filters of~$L$ \\
\midrule
\normalnumber{1} & $X^*$ & $\{ \sigma x \,|\, x \in X \}$ & maps~$\NN \to X$ \\
\normalnumber{2} & $X^*$ & $\{ \sigma x \,|\, x \in X \}$,\ \ $\{ \sigma\tau \,|\, \tau \in X^*, a \in \sigma\tau \}$ for each~$a \in X$ & surjections~$\NN \twoheadrightarrow X$ \\
\normalnumber{3} & f.g. ideals & --- & ideals \\
\normalnumber{4} & f.g. ideals & $\{ \sigma+(a), \sigma+(b) \}$ for each~$ab \in \sigma$,\ \ $\{\}$ if~$1 \in \sigma$ & prime ideals \\
\normalnumber{5} & opens & $\mathcal{U}$ such that~$\sigma = \bigcup \mathcal{U}$ & points \\
\normalnumber{6} & $\{\star\}$ & $\{ \star \,|\, \varphi \} \cup \{ \star \,|\, \neg\varphi \}$ &
witnesses of~\textsc{lem}
\\
\bottomrule
\end{tabular}\par}
\bigskip
\textbf{Def.} A \emph{filter} of a forcing notion~$(L,\mathrm{Cov})$
is a subset~$F \subseteq L$ such that
\vspace*{-0.4em}
\begin{enumerate}
\scriptsize
\item $F$ is upward-closed: if~$\tau \preccurlyeq \sigma$ and if~$\tau \in F$, then~$\sigma \in F$; \\[-3.0em]
\item $F$ is downward-directed: $F$ is inhabited, and if~$\alpha,\beta \in F$,
then there is a common refinement~$\sigma \preccurlyeq \alpha,\beta$ such
that~$\sigma \in F$; and \\[-2.0em]
\item $F$ splits the covering system: if~$\sigma \in F$ and~$R \in
\Cov(\sigma)$, then~$\tau \in F$ for some~$\tau \in R$.
\end{enumerate}
\end{frame}
\addtocounter{framenumber}{-1}
\end{document}