Skip to content

Latest commit

 

History

History
417 lines (379 loc) · 10.5 KB

File metadata and controls

417 lines (379 loc) · 10.5 KB

中文文档

Description

You are given an array points representing integer coordinates of some points on a 2D-plane, where points[i] = [xi, yi].

The cost of connecting two points [xi, yi] and [xj, yj] is the manhattan distance between them: |xi - xj| + |yi - yj|, where |val| denotes the absolute value of val.

Return the minimum cost to make all points connected. All points are connected if there is exactly one simple path between any two points.

 

Example 1:

Input: points = [[0,0],[2,2],[3,10],[5,2],[7,0]]
Output: 20
Explanation: 

We can connect the points as shown above to get the minimum cost of 20.
Notice that there is a unique path between every pair of points.

Example 2:

Input: points = [[3,12],[-2,5],[-4,1]]
Output: 18

 

Constraints:

  • 1 <= points.length <= 1000
  • -106 <= xi, yi <= 106
  • All pairs (xi, yi) are distinct.

Solutions

Python3

class Solution:
    def minCostConnectPoints(self, points: List[List[int]]) -> int:
        n = len(points)
        g = [[0] * n for _ in range(n)]
        dist = [inf] * n
        vis = [False] * n
        for i, (x1, y1) in enumerate(points):
            for j in range(i + 1, n):
                x2, y2 = points[j]
                t = abs(x1 - x2) + abs(y1 - y2)
                g[i][j] = g[j][i] = t
        dist[0] = 0
        ans = 0
        for _ in range(n):
            i = -1
            for j in range(n):
                if not vis[j] and (i == -1 or dist[j] < dist[i]):
                    i = j
            vis[i] = True
            ans += dist[i]
            for j in range(n):
                if not vis[j]:
                    dist[j] = min(dist[j], g[i][j])
        return ans
class Solution:
    def minCostConnectPoints(self, points: List[List[int]]) -> int:
        def find(x: int) -> int:
            if p[x] != x:
                p[x] = find(p[x])
            return p[x]

        n = len(points)
        g = []
        for i, (x1, y1) in enumerate(points):
            for j in range(i + 1, n):
                x2, y2 = points[j]
                t = abs(x1 - x2) + abs(y1 - y2)
                g.append((t, i, j))
        p = list(range(n))
        ans = 0
        for cost, i, j in sorted(g):
            pa, pb = find(i), find(j)
            if pa == pb:
                continue
            p[pa] = pb
            ans += cost
            n -= 1
            if n == 1:
                break
        return ans

Java

class Solution {
    public int minCostConnectPoints(int[][] points) {
        final int inf = 1 << 30;
        int n = points.length;
        int[][] g = new int[n][n];
        for (int i = 0; i < n; ++i) {
            int x1 = points[i][0], y1 = points[i][1];
            for (int j = i + 1; j < n; ++j) {
                int x2 = points[j][0], y2 = points[j][1];
                int t = Math.abs(x1 - x2) + Math.abs(y1 - y2);
                g[i][j] = t;
                g[j][i] = t;
            }
        }
        int[] dist = new int[n];
        boolean[] vis = new boolean[n];
        Arrays.fill(dist, inf);
        dist[0] = 0;
        int ans = 0;
        for (int i = 0; i < n; ++i) {
            int j = -1;
            for (int k = 0; k < n; ++k) {
                if (!vis[k] && (j == -1 || dist[k] < dist[j])) {
                    j = k;
                }
            }
            vis[j] = true;
            ans += dist[j];
            for (int k = 0; k < n; ++k) {
                if (!vis[k]) {
                    dist[k] = Math.min(dist[k], g[j][k]);
                }
            }
        }
        return ans;
    }
}
class Solution {
    private int[] p;

    public int minCostConnectPoints(int[][] points) {
        int n = points.length;
        List<int[]> g = new ArrayList<>();
        for (int i = 0; i < n; ++i) {
            int x1 = points[i][0], y1 = points[i][1];
            for (int j = i + 1; j < n; ++j) {
                int x2 = points[j][0], y2 = points[j][1];
                g.add(new int[] {Math.abs(x1 - x2) + Math.abs(y1 - y2), i, j});
            }
        }
        g.sort(Comparator.comparingInt(a -> a[0]));
        p = new int[n];
        for (int i = 0; i < n; ++i) {
            p[i] = i;
        }
        int ans = 0;
        for (int[] e : g) {
            int cost = e[0], i = e[1], j = e[2];
            if (find(i) == find(j)) {
                continue;
            }
            p[find(i)] = find(j);
            ans += cost;
            if (--n == 1) {
                return ans;
            }
        }
        return 0;
    }

    private int find(int x) {
        if (p[x] != x) {
            p[x] = find(p[x]);
        }
        return p[x];
    }
}

C++

class Solution {
public:
    int minCostConnectPoints(vector<vector<int>>& points) {
        int n = points.size();
        int g[n][n];
        for (int i = 0; i < n; ++i) {
            int x1 = points[i][0], y1 = points[i][1];
            for (int j = i + 1; j < n; ++j) {
                int x2 = points[j][0], y2 = points[j][1];
                int t = abs(x1 - x2) + abs(y1 - y2);
                g[i][j] = t;
                g[j][i] = t;
            }
        }
        int dist[n];
        bool vis[n];
        memset(dist, 0x3f, sizeof(dist));
        memset(vis, false, sizeof(vis));
        dist[0] = 0;
        int ans = 0;
        for (int i = 0; i < n; ++i) {
            int j = -1;
            for (int k = 0; k < n; ++k) {
                if (!vis[k] && (j == -1 || dist[k] < dist[j])) {
                    j = k;
                }
            }
            vis[j] = true;
            ans += dist[j];
            for (int k = 0; k < n; ++k) {
                if (!vis[k]) {
                    dist[k] = min(dist[k], g[j][k]);
                }
            }
        }
        return ans;
    }
};
class Solution {
public:
    vector<int> p;

    int minCostConnectPoints(vector<vector<int>>& points) {
        int n = points.size();
        vector<vector<int>> g;
        for (int i = 0; i < n; ++i) {
            int x1 = points[i][0], y1 = points[i][1];
            for (int j = i + 1; j < n; ++j) {
                int x2 = points[j][0], y2 = points[j][1];
                g.push_back({abs(x1 - x2) + abs(y1 - y2), i, j});
            }
        }
        sort(g.begin(), g.end());
        p.resize(n);
        for (int i = 0; i < n; ++i) p[i] = i;
        int ans = 0;
        for (auto& e : g) {
            int cost = e[0], i = e[1], j = e[2];
            if (find(i) == find(j)) continue;
            p[find(i)] = find(j);
            ans += cost;
            if (--n == 1) return ans;
        }
        return 0;
    }

    int find(int x) {
        if (p[x] != x) p[x] = find(p[x]);
        return p[x];
    }
};

Go

func minCostConnectPoints(points [][]int) (ans int) {
	n := len(points)
	g := make([][]int, n)
	vis := make([]bool, n)
	dist := make([]int, n)
	for i := range g {
		g[i] = make([]int, n)
		dist[i] = 1 << 30
	}
	for i := range g {
		x1, y1 := points[i][0], points[i][1]
		for j := i + 1; j < n; j++ {
			x2, y2 := points[j][0], points[j][1]
			t := abs(x1-x2) + abs(y1-y2)
			g[i][j] = t
			g[j][i] = t
		}
	}
	dist[0] = 0
	for i := 0; i < n; i++ {
		j := -1
		for k := 0; k < n; k++ {
			if !vis[k] && (j == -1 || dist[k] < dist[j]) {
				j = k
			}
		}
		vis[j] = true
		ans += dist[j]
		for k := 0; k < n; k++ {
			if !vis[k] {
				dist[k] = min(dist[k], g[j][k])
			}
		}
	}
	return
}

func min(a, b int) int {
	if a < b {
		return a
	}
	return b
}

func abs(x int) int {
	if x < 0 {
		return -x
	}
	return x
}
func minCostConnectPoints(points [][]int) int {
	n := len(points)
	var g [][]int
	for i, p := range points {
		x1, y1 := p[0], p[1]
		for j := i + 1; j < n; j++ {
			x2, y2 := points[j][0], points[j][1]
			g = append(g, []int{abs(x1-x2) + abs(y1-y2), i, j})
		}
	}
	sort.Slice(g, func(i, j int) bool {
		return g[i][0] < g[j][0]
	})
	ans := 0
	p := make([]int, n)
	for i := range p {
		p[i] = i
	}
	var find func(x int) int
	find = func(x int) int {
		if p[x] != x {
			p[x] = find(p[x])
		}
		return p[x]
	}
	for _, e := range g {
		cost, i, j := e[0], e[1], e[2]
		if find(i) == find(j) {
			continue
		}
		p[find(i)] = find(j)
		ans += cost
		n--
		if n == 1 {
			return ans
		}
	}
	return 0
}

func abs(x int) int {
	if x < 0 {
		return -x
	}
	return x
}

TypeScript

function minCostConnectPoints(points: number[][]): number {
    const n = points.length;
    const g: number[][] = Array(n)
        .fill(0)
        .map(() => Array(n).fill(0));
    const dist: number[] = Array(n).fill(1 << 30);
    const vis: boolean[] = Array(n).fill(false);
    for (let i = 0; i < n; ++i) {
        const [x1, y1] = points[i];
        for (let j = i + 1; j < n; ++j) {
            const [x2, y2] = points[j];
            const t = Math.abs(x1 - x2) + Math.abs(y1 - y2);
            g[i][j] = t;
            g[j][i] = t;
        }
    }
    let ans = 0;
    dist[0] = 0;
    for (let i = 0; i < n; ++i) {
        let j = -1;
        for (let k = 0; k < n; ++k) {
            if (!vis[k] && (j === -1 || dist[k] < dist[j])) {
                j = k;
            }
        }
        vis[j] = true;
        ans += dist[j];
        for (let k = 0; k < n; ++k) {
            if (!vis[k]) {
                dist[k] = Math.min(dist[k], g[j][k]);
            }
        }
    }
    return ans;
}

...