You are given an array of integers (both positive and negative). Find the contiguous sequence with the largest sum. Return the sum.
Example:
Input: [-2,1,-3,4,-1,2,1,-5,4] Output: 6 Explanation: [4,-1,2,1] has the largest sum 6.
Follow Up:
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
Solution 1: Dynamic Programming
We define
where
The answer is
The time complexity is
We notice that
class Solution:
def maxSubArray(self, nums: List[int]) -> int:
ans = f = -inf
for x in nums:
f = max(f, 0) + x
ans = max(ans, f)
return ans
class Solution {
public int maxSubArray(int[] nums) {
int ans = Integer.MIN_VALUE, f = Integer.MIN_VALUE;
for (int x : nums) {
f = Math.max(f, 0) + x;
ans = Math.max(ans, f);
}
return ans;
}
}
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int ans = INT_MIN, f = INT_MIN;
for (int x : nums) {
f = max(f, 0) + x;
ans = max(ans, f);
}
return ans;
}
};
func maxSubArray(nums []int) int {
ans, f := math.MinInt32, math.MinInt32
for _, x := range nums {
f = max(f, 0) + x
ans = max(ans, f)
}
return ans
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
function maxSubArray(nums: number[]): number {
let [ans, f] = [-Infinity, -Infinity];
for (const x of nums) {
f = Math.max(f, 0) + x;
ans = Math.max(ans, f);
}
return ans;
}
/**
* @param {number[]} nums
* @return {number}
*/
var maxSubArray = function (nums) {
let [ans, f] = [-Infinity, -Infinity];
for (const x of nums) {
f = Math.max(f, 0) + x;
ans = Math.max(ans, f);
}
return ans;
};