-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathWeek2.m
135 lines (121 loc) · 3.64 KB
/
Week2.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
% Week 2
% This week is about covariance, correlation and regression between 2
% random variables.
% record the computation of mean and variance from last week:
%%
rng(1);
nitem=1000;
% x = randn(nitem,1);% generate n random sample from a normal distribution
% these n samples are random realization of the underlying distribution
% alternatively, you can view it as a random sampling of the same
% distribution for n times
x = random('exp',1,[nitem,1]);
hist(x,100);% histogram for visualizing the data
hold on;
mean_x_1=mean(x);% compute the mean, the expected value of x
line([mean_x_1,mean_x_1],[0,40],'color','r','linewidth',1.5)
mean_x_2=sum(x)/length(x);% compute the mean, again
disp(['The mean of x is ' num2str(mean_x_1)])
var_x_1=var(x);% compute the variance, the expected value of (x-E(x))^2
line([mean_x_1-var_x_1/2,mean_x_1+var_x_1/2],[20,20],'color','r','linewidth',1.5)
var_x_2=sum((x-sum(x)/length(x)).^2)/(length(x)-1);% compute the variance, again
disp(['The var of x is ' num2str(var_x_1)])
%
%% we can simulate a demo for the central limit theorm
% x = random('norm',0,1,[nitem,10000]);
x = random('exp',1,[nitem,10000]);
meanx=mean(x,1);
figure;
hist(meanx,100);% histogram for visualizing the data
%% different way to compute covariance
x=randn(nitem,1);
y=randn(nitem,1);
figure;
scatterhist(x,y)
cov_xy_1 = cov(x,y);
disp(['The covariance between x and y is ' num2str(cov_xy_1(2,1))])
cov_xy_2 = sum((x-mean(x)).*(y-mean(y)))/(nitem-1);
disp(['The covariance between x and y is ' num2str(cov_xy_2)])
% similar to the above
distxy=nan(length(x),length(x));
for i=1:length(x)
for j=1:length(x)
if i~=j
distxy(i,j)=(x(i)-x(j))*(y(i)-y(j));
end
end
end
cov_xy_3 = nansum(distxy(:))/sum(~isnan(distxy(:)))/2; % unbiased
disp(['The covariance between x and y is ' num2str(cov_xy_3)])
% imagesc(distxy)
%% correlation
corr(x,y)
cov_xy_1(2,1)./(sqrt(cov_xy_1(1,1))*sqrt(cov_xy_1(2,2)))
%% regression demo
rng(1)
rho=[.9,.6,.3,0];
slope=[1,.4,-.2,-.8];
irr=1;
iss=1;
n = 200;% N trials
iplot=0;
mu1=[0 0];
Sigma1=[1 0; 0 1];
R1=chol(Sigma1);
Z1 = repmat(mu1,n,1) + randn(n,2)*R1;
X=Z1(:,1);
% Gaussian copula
figure;hold on
% mu=[0 0];
Sigma=[1 rho(irr); rho(irr) 1];
% Z = mvnrnd(mu,Sigma,n);
% U = normcdf(Z,0,1);
R=chol(Sigma);
Z1(:,2)=randn(n,1);
U = Z1*R;
iplot=iplot+1;
% introduce slope
U(:,2)=U(:,2).*slope(iss);
% normalized
constant=min(U(:,2));
cst=constant*sign(constant);
U(:,2)=U(:,2)+cst;
ytmp=U(:,2);
scatterhist(X,ytmp);hold on
plot(X,X.*slope(iss)+cst,'r')
title(['Y_' num2str(iplot) '=' num2str(slope(iss)) '*X+c_' num2str(iplot) '; (rho_' num2str(iplot) '=' num2str(rho(irr)) ')']);
% axis([-2.2 2.2 0 5.5])
xlabel('Rating');
ylabel('Response');
[rho1,pval]=corr(X,ytmp);
% covm=cov(X,ytmp);
% rho2=covm(2,1)./(sqrt(covm(1,1))*sqrt(covm(2,2)));
% [beta,bci,rho2,RINT,STATS] = regress(ytmp,[X,ones(length(X),1)]);
%%
figure;
for irr=1:length(rho)
for iss=1:length(slope)
% Gaussian copula
subplot(4,4,iplot);hold on
% mu=[0 0];
Sigma=[1 rho(irr); rho(irr) 1];
% Z = mvnrnd(mu,Sigma,n);
% U = normcdf(Z,0,1);
R=chol(Sigma);
Z1(:,2)=randn(n,1);
U = Z1*R;
iplot=iplot+1;
% introduce slope
U(:,2)=U(:,2).*slope(iss);
% normalized
constant=min(U(:,2));
cst=constant*sign(constant);
U(:,2)=U(:,2)+cst;
plot(X,U(:,2),'.k');
plot(X,X.*slope(iss)+cst,'r')
title(['Y_' num2str(iplot) '=' num2str(slope(iss)) '*X+c_' num2str(iplot) '; (rho_' num2str(iplot) '=' num2str(rho(irr)) ')']);
axis([-2.2 2.2 0 5.5])
end
end
xlabel('Rating');
ylabel('Response');