-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAssignment05_00.v
77 lines (50 loc) · 1.78 KB
/
Assignment05_00.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
Require Export MoreCoq.
(* Important:
- You are NOT allowed to use the [admit] tactic
because [admit] simply admits any goal
regardless of whether it is provable or not.
But, you can leave [admit] for problems that you cannot prove.
Then you will get zero points for those problems.
- You are NOT allowed to use the following tactics.
[tauto], [intuition], [firstorder], [omega].
- Do NOT add any additional `Require Import/Export`.
*)
Inductive and (P Q : Prop) : Prop :=
conj : P -> Q -> (and P Q).
Notation "P /\ Q" := (and P Q) : type_scope.
Inductive or (P Q : Prop) : Prop :=
| or_introl : P -> or P Q
| or_intror : Q -> or P Q.
Notation "P \/ Q" := (or P Q) : type_scope.
Definition iff (P Q : Prop) := (P -> Q) /\ (Q -> P).
Notation "P <-> Q" := (iff P Q)
(at level 95, no associativity)
: type_scope.
Inductive False : Prop := .
Definition not (P:Prop) := P -> False.
Notation "~ x" := (not x) : type_scope.
Notation "x <> y" := (~ (x = y)) : type_scope.
Inductive le : nat -> nat -> Prop :=
| le_n : forall n, le n n
| le_S : forall n m, (le n m) -> (le n (S m)).
Notation "m <= n" := (le m n).
Definition lt (n m:nat) := le (S n) m.
Notation "m < n" := (lt m n).
Definition even (n:nat) : Prop :=
evenb n = true.
Inductive ev : forall (n: nat), Prop :=
| ev_0 : ev O
| ev_SS : forall (n:nat) (pf_evn :ev n), ev (S (S n))
.
Inductive beautiful : nat -> Prop :=
| b_0 : beautiful 0
| b_3 : beautiful 3
| b_5 : beautiful 5
| b_sum : forall n m (beuty_n:beautiful n) (beauty_m: beautiful m),
beautiful (n+m)
.
Inductive gorgeous : nat -> Prop :=
g_0 : gorgeous 0
| g_plus3 : forall n, gorgeous n -> gorgeous (3+n)
| g_plus5 : forall n, gorgeous n -> gorgeous (5+n)
.