forked from lizhengwei1992/mobile_phone_human_matting
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeploy.py
102 lines (77 loc) · 2.69 KB
/
deploy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
'''
Author : Zhengwei Li
Version : 1.0.0
'''
import time
import cv2
import torch
import pdb
import argparse
import os
import numpy as np
import torch.nn.functional as F
import pdb
parser = argparse.ArgumentParser(description='Semantic aware super-resolution')
parser.add_argument('--model', default='./model/*.pt', help='preTrained model')
parser.add_argument('--inputPath', default='./', help='input data path')
parser.add_argument('--savePath', default='./', help='output data path')
parser.add_argument('--size', type=int, default=128, help='net input size')
parser.add_argument('--without_gpu', action='store_true', default=False, help='use cpu')
args = parser.parse_args()
if args.without_gpu:
print("use CPU !")
device = torch.device('cpu')
else:
if torch.cuda.is_available():
device = torch.device('cuda:0')
def load_model(args):
print('Loading model from {}...'.format(args.model))
if args.without_gpu:
myModel = torch.load(args.model, map_location=lambda storage, loc: storage)
else:
myModel = torch.load(args.model)
myModel.eval()
myModel.to(device)
print(myModel)
return myModel
def np_norm(x):
low = x.min()
hig = x.max()
y = (x - low) / (hig - low)
return y
def seg_process(args, net):
filelist = [f for f in os.listdir(args.inputPath)]
filelist.sort()
# set grad false
torch.set_grad_enabled(False)
i = 1
t_all = 0
for f in filelist:
print('The %dth image : %s ...'%(i,f))
image = cv2.imread(os.path.join(args.inputPath, f))
# image = image[:,400:,:]
origin_h, origin_w, c = image.shape
image_resize = cv2.resize(image, (args.size,args.size), interpolation=cv2.INTER_CUBIC)
image_resize = (image_resize - (104., 112., 121.,)) / 255.0
tensor_4D = torch.FloatTensor(1, 3, args.size, args.size)
tensor_4D[0,:,:,:] = torch.FloatTensor(image_resize.transpose(2,0,1))
inputs = tensor_4D.to(device)
t0 = time.time()
seg, alpha = net(inputs)
if args.without_gpu:
alpha_np = alpha[0,0,:,:].data.numpy()
else:
alpha_np = alpha[0,0,:,:].cpu().data.numpy()
tt = (time.time() - t0)
alpha_np = cv2.resize(alpha_np, (origin_w, origin_h), interpolation=cv2.INTER_CUBIC)
seg_fg = np.multiply(alpha_np[..., np.newaxis], image)
f = f[:-4] + '_.png'
cv2.imwrite(os.path.join(args.savePath, f), seg_fg)
i+=1
t_all += tt
print("image number: {} mean matting time : {:.0f} ms".format(i, t_all/i*1000))
def main(args):
myModel = load_model(args)
seg_process(args, myModel)
if __name__ == "__main__":
main(args)