-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
Copy path09_2_softmax_mnist.py
105 lines (85 loc) · 3.45 KB
/
09_2_softmax_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
# https://github.com/pytorch/examples/blob/master/mnist/main.py
from __future__ import print_function
from torch import nn, optim, cuda
from torch.utils import data
from torchvision import datasets, transforms
import torch.nn.functional as F
import time
# Training settings
batch_size = 64
device = 'cuda' if cuda.is_available() else 'cpu'
print(f'Training MNIST Model on {device}\n{"=" * 44}')
# MNIST Dataset
train_dataset = datasets.MNIST(root='./mnist_data/',
train=True,
transform=transforms.ToTensor(),
download=True)
test_dataset = datasets.MNIST(root='./mnist_data/',
train=False,
transform=transforms.ToTensor())
# Data Loader (Input Pipeline)
train_loader = data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
test_loader = data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False)
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.l1 = nn.Linear(784, 520)
self.l2 = nn.Linear(520, 320)
self.l3 = nn.Linear(320, 240)
self.l4 = nn.Linear(240, 120)
self.l5 = nn.Linear(120, 10)
def forward(self, x):
x = x.view(-1, 784) # Flatten the data (n, 1, 28, 28)-> (n, 784)
x = F.relu(self.l1(x))
x = F.relu(self.l2(x))
x = F.relu(self.l3(x))
x = F.relu(self.l4(x))
return self.l5(x)
model = Net()
model.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
def train(epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
if batch_idx % 10 == 0:
print('Train Epoch: {} | Batch Status: {}/{} ({:.0f}%) | Loss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
def test():
model.eval()
test_loss = 0
correct = 0
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
# sum up batch loss
test_loss += criterion(output, target).item()
# get the index of the max
pred = output.data.max(1, keepdim=True)[1]
correct += pred.eq(target.data.view_as(pred)).cpu().sum()
test_loss /= len(test_loader.dataset)
print(f'===========================\nTest set: Average loss: {test_loss:.4f}, Accuracy: {correct}/{len(test_loader.dataset)} '
f'({100. * correct / len(test_loader.dataset):.0f}%)')
if __name__ == '__main__':
since = time.time()
for epoch in range(1, 10):
epoch_start = time.time()
train(epoch)
m, s = divmod(time.time() - epoch_start, 60)
print(f'Training time: {m:.0f}m {s:.0f}s')
test()
m, s = divmod(time.time() - epoch_start, 60)
print(f'Testing time: {m:.0f}m {s:.0f}s')
m, s = divmod(time.time() - since, 60)
print(f'Total Time: {m:.0f}m {s:.0f}s\nModel was trained on {device}!')