-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtestA3C.py
163 lines (105 loc) · 2.97 KB
/
testA3C.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# coding: utf-8
# In[1]:
import os
import sys
from chainerrl.agents import a3c
from chainerrl.agents import PPO
from chainerrl import links
from chainerrl import misc
from chainerrl.optimizers.nonbias_weight_decay import NonbiasWeightDecay
from chainerrl import policies
import chainer
import chainerrl_autoencoder.experiments_ae as experiments_ae
import logging
import sys
import argparse
import gym
from gym.envs.registration import register
import numpy as np
import marlo
import time
import envs_setup
import plots
print(experiments_ae.__file__)
from os.path import dirname, join, abspath
sys.path.insert(0, abspath(join(dirname(__file__), '..')))
gpu = 0
steps = 10 ** 6
eval_n_runs = 10
eval_interval = 10000
update_interval = 2048
outdir = 'results'
lr = 3e-4
bound_mean = False
normalize_obs = False\
print('Training with autoencoder reduction')
# In[2]:
class A3CFFSoftmax(chainer.ChainList, a3c.A3CModel):
def __init__(self, ndim_obs, n_actions, hidden_sizes=(200, 200)):
self.pi = policies.SoftmaxPolicy(
model=links.MLP(ndim_obs, n_actions, hidden_sizes))
self.v = links.MLP(ndim_obs, 1, hidden_sizes=hidden_sizes)
super().__init__(self.pi, self.v)
def pi_and_v(self, state):
return self.pi(state), self.v(state)
# In[3]:
def phi(obs):
return obs.astype(np.float32)
# In[4]:
envs_setup.start('MarLo-FindTheGoal-v0', width=600, height=400)
env = envs_setup.env
# In[5]:
obs = env.reset()
env.render()
action = env.action_space.sample()
obs, r, done, info = env.step(action)
print('reward: ', r)
print('done: ', done)
print('actions: ', str(env.action_space))
# In[6]:
timestep_limit = env.spec.tags.get(
'wrapper_config.TimeLimit.max_episode_steps')
obs_space = env.observation_space
action_space = env.action_space
print("observation_space: ", obs_space.low.size)
model = A3CFFSoftmax(3750, action_space.n)
# In[7]:
opt = chainer.optimizers.Adam(alpha=lr, eps=1e-5)
opt.setup(model)
# In[8]:
# Initialize the agent
agent = PPO(
model, opt,
gpu=gpu,
phi=phi,
update_interval=update_interval,
minibatch_size=64, epochs=10,
clip_eps_vf=None, entropy_coef=0.0,
)
# Linearly decay the learning rate to zero
def lr_setter(env, agent, value):
agent.optimizer.alpha = value
lr_decay_hook = experiments_ae.LinearInterpolationHook(
steps, 3e-4, 0, lr_setter)
# Linearly decay the clipping parameter to zero
def clip_eps_setter(env, agent, value):
agent.clip_eps = value
clip_eps_decay_hook = experiments_ae.LinearInterpolationHook(
steps, 0.2, 0, clip_eps_setter)
# In[ ]:
from chainerrl_autoencoder.experiments_ae.train_agent import train_agent_with_evaluation
# Start training/evaluation
train_agent_with_evaluation(
agent=agent,
env=env,
eval_env=env,
outdir=outdir,
steps=steps,
eval_n_runs=eval_n_runs,
eval_interval=eval_interval,
max_episode_len=timestep_limit,
step_hooks=[
lr_decay_hook,
clip_eps_decay_hook
],
)