forked from Lion-ly/HNIT-JXROBOT
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathvisualTask.py
805 lines (736 loc) · 32.3 KB
/
visualTask.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
# coding: utf-8
"""
visual classes for Nao golf task.
@author: Meringue
@date: 2018/1/15
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import sys
import os
import codecs
# sys.path.append("/home/meringue/Softwares/pynaoqi-sdk/") #naoqi directory
# sys.path.append("./")
import numpy as np
import vision_definitions as vd
import time
from ConfigureNao import ConfigureNao
from naoqi import ALProxy
import motion
import math
import almath
import cv2
cv_version = cv2.__version__.split(".")[0]
if cv_version == "2": # for OpenCV 2
import cv2.cv as cv
class VisualBasis(ConfigureNao):
"""
a basic class for visual task.
"""
def __init__(self, IP, PORT=9559, cameraId=vd.kBottomCamera, resolution=vd.kVGA):
"""
initilization.
Args:
IP: NAO's IP
cameraId: bottom camera (1,default) or top camera (0).
resolution: kVGA, default: 640*480)
Return:
none
"""
super(VisualBasis, self).__init__(IP, PORT)
self.cameraId = cameraId
self.cameraName = "CameraBottom" if self.cameraId == vd.kBottomCamera else "CameraTop"
self.resolution = resolution
self.colorSpace = vd.kBGRColorSpace
self.fps = 20
self.frameHeight = 0
self.frameWidth = 0
self.frameChannels = 0
self.frameArray = None
self.cameraPitchRange = 47.64 / 180 * np.pi
self.cameraYawRange = 60.97 / 180 * np.pi
self.cameraProxy.setActiveCamera(self.cameraId)
def updateFrame(self, client="python_client"):
"""
get a new image from the specified camera and save it in self._frame.
Args:
client: client name.
Return:
none.
"""
stime = time.time()
if self.cameraProxy.getActiveCamera() != self.cameraId:
self.cameraProxy.setActiveCamera(self.cameraId)
time.sleep(1)
videoClient = self.cameraProxy.subscribe(client, self.resolution, self.colorSpace, self.fps)
frame = self.cameraProxy.getImageRemote(videoClient)
self.cameraProxy.unsubscribe(videoClient)
try:
self.frameWidth = frame[0]
self.frameHeight = frame[1]
self.frameChannels = frame[2]
self.frameArray = np.frombuffer(frame[6], dtype=np.uint8).reshape([frame[1], frame[0], frame[2]])
except IndexError:
print("get image failed!")
with codecs.open("updateTimes.txt", 'a', encoding='utf-8') as timeF:
timeF.write("update times:{}\n".format(time.time() - stime))
def getFrameArray(self):
"""
get current frame.
Return:
current frame array (numpy array).
"""
if self.frameArray is None:
return np.array([])
return self.frameArray
def showFrame(self):
"""
show current frame image.
"""
if self.frameArray is None:
print("please get an image from Nao with the method updateFrame()")
else:
cv2.imshow("current frame", self.frameArray)
def printFrameData(self):
"""
print current frame data.
"""
print("frame height = ", self.frameHeight)
print("frame width = ", self.frameWidth)
print("frame channels = ", self.frameChannels)
print("frame shape = ", self.frameArray.shape)
def saveFrame(self, framePath):
"""
save current frame to specified direction.
Arguments:
framePath: image path.
"""
cv2.imwrite(framePath, self.frameArray)
print("current frame image has been saved in", framePath)
def setParam(self, paramName=None, paramValue=None):
raise NotImplementedError
def setAllParamsToDefault(self):
raise NotImplementedError
class BallDetect(VisualBasis):
"""
derived from VisualBasics, used to detect the ball.
"""
def __init__(self, IP, PORT=9559, cameraId=vd.kBottomCamera, resolution=vd.kVGA,
writeFrame=False, writeFramewithCircle=False):
"""
initialization.
"""
super(BallDetect, self).__init__(IP, PORT, cameraId, resolution)
self.ballData = {"centerX": 0, "centerY": 0, "radius": 0}
self.ballPosition = {"disX": 0, "disY": 0, "angle": 0}
self.ballRadius = 0.025
self.writeFrame = writeFrame
self.writeFramewithCircle = writeFramewithCircle
def __getChannelAndBlur(self, color):
"""
get the specified channel and blur the result.
Args:
color: the color channel to split, only supports the color of red, geen and blue.
Return:
the specified color channel or None (when the color is not supported).
"""
try:
channelB = self.frameArray[:, :, 0]
channelG = self.frameArray[:, :, 1]
channelR = self.frameArray[:, :, 2]
except:
print("no image detected!")
Hm = 6
if color == "red":
channelB = channelB * 0.1 * Hm
channelG = channelG * 0.1 * Hm
channelR = channelR - channelB - channelG
channelR = 3 * channelR
channelR = cv2.GaussianBlur(channelR, (9, 9), 1.5)
channelR[channelR < 0] = 0
channelR[channelR > 255] = 255
return np.uint8(np.round(channelR))
elif color == "blue":
channelR = channelR * 0.1 * Hm
channelG = channelG * 0.1 * Hm
channelB = channelB - channelG - channelR
channelB = 3 * channelB
channelB = cv2.GaussianBlur(channelB, (9, 9), 1.5)
channelB[channelB < 0] = 0
channelB[channelB > 255] = 255
return np.uint8(np.round(channelB))
elif color == "green":
channelB = channelB * 0.1 * Hm
channelR = channelR * 0.1 * Hm
channelG = channelG - channelB - channelR
channelG = 3 * channelG
channelG = cv2.GaussianBlur(channelG, (9, 9), 1.5)
channelG[channelG < 0] = 0
channelG[channelG > 255] = 255
return np.uint8(np.round(channelG))
else:
print("can not recognize the color!")
print("supported color:red, green and blue.")
return None
def __binImageHSV(self, minHSV1, maxHSV1, minHSV2, maxHSV2):
"""
get binary image from the HSV image (transformed from BGR image)
Args:
minHSV1, maxHSV1, minHSV2, maxHSV2: parameters [np.array] for red ball detection
Return:
binImage: binary image.
"""
try:
frameArray = self.frameArray.copy()
imgHSV = cv2.cvtColor(frameArray, cv2.COLOR_BGR2HSV)
except:
print("no image detected!")
else:
frameBin1 = cv2.inRange(imgHSV, minHSV1, maxHSV1)
frameBin2 = cv2.inRange(imgHSV, minHSV2, maxHSV2)
frameBin = np.maximum(frameBin1, frameBin2)
frameBin = cv2.GaussianBlur(frameBin, (9, 9), 1.5)
return frameBin
def __findCircles(self, img, minDist, minRadius, maxRadius):
"""
detect circles from an image.
Args:
img: image to be detected.
minDist: minimum distance between the centers of the detected circles.
minRadius: minimum circle radius.
maxRadius: maximum circle radius.
Return:
an uint16 numpy array shaped circleNum*3 if circleNum>0, ([[circleX, circleY,radius]])
else return None.
"""
gradient_name = cv2.HOUGH_GRADIENT
circles = cv2.HoughCircles(np.uint8(img), gradient_name, 1, \
minDist, param1=150, param2=25, \
minRadius=minRadius, maxRadius=maxRadius)
if circles is None:
return np.uint16([])
else:
return np.uint16(np.around(circles[0,]))
def __selectCircle(self, circles):
"""
select one circle in list type from all circles detected.
Args:
circles: numpy array shaped (N, 3), N is the number of circles.
Return:
selected circle or None (no circle is selected).
"""
if circles.shape[0] == 0:
return circles
if circles.shape[0] == 1:
centerX = circles[0][0]
centerY = circles[0][1]
radius = circles[0][2]
initX = centerX - 2 * radius
initY = centerY - 2 * radius
if (initX < 0 or initY < 0 or (initX + 4 * radius) > self.frameWidth or \
(initY + 4 * radius) > self.frameHeight or radius < 1):
return circles
channelB = self.frameArray[:, :, 0]
channelG = self.frameArray[:, :, 1]
channelR = self.frameArray[:, :, 2]
rRatioMin = 1.0;
circleSelected = np.uint16([])
for circle in circles:
centerX = circle[0]
centerY = circle[1]
radius = circle[2]
initX = centerX - 2 * radius
initY = centerY - 2 * radius
if initX < 0 or initY < 0 or (initX + 4 * radius) > self.frameWidth or \
(initY + 4 * radius) > self.frameHeight or radius < 1:
continue
rectBallArea = self.frameArray[initY:initY + 4 * radius + 1, initX:initX + 4 * radius + 1, :]
bFlat = np.float16(rectBallArea[:, :, 0].flatten())
gFlat = np.float16(rectBallArea[:, :, 1].flatten())
rFlat = np.float16(rectBallArea[:, :, 2].flatten())
rScore1 = np.uint8(rFlat > 1.0 * gFlat)
rScore2 = np.uint8(rFlat > 1.0 * bFlat)
rScore = float(np.sum(rScore1 * rScore2))
gScore = float(np.sum(np.uint8(gFlat > 1.0 * rFlat)))
rRatio = rScore / len(rFlat)
gRatio = gScore / len(gFlat)
if rRatio >= 0.1 and gRatio >= 0.1 and abs(rRatio - 0.19) < abs(rRatioMin - 0.19):
circleSelected = circle
rRatioMin = rRatio
return circleSelected
def __updateBallPositionFitting(self, standState):
"""
compute and update the ball position with compensation.
Args:
standState: "standInit" or "standUp".
"""
bottomCameraDirection = {"standInit": 49.2, "standUp": 39.7}
ballRadius = self.ballRadius
try:
cameraDirection = bottomCameraDirection[standState]
except KeyError:
print("Error! unknown standState, please check the value of stand state!")
else:
if self.ballData["radius"] == 0:
self.ballPosition = {"disX": 0, "disY": 0, "angle": 0}
else:
centerX = self.ballData["centerX"]
centerY = self.ballData["centerY"]
radius = self.ballData["radius"]
cameraPosition = self.motionProxy.getPosition("CameraBottom", 2, True)
cameraX = cameraPosition[0]
cameraY = cameraPosition[1]
cameraHeight = cameraPosition[2]
headPitches = self.motionProxy.getAngles("HeadPitch", True)
headPitch = headPitches[0]
headYaws = self.motionProxy.getAngles("HeadYaw", True)
headYaw = headYaws[0]
ballPitch = (centerY - 240.0) * self.cameraPitchRange / 480.0 # y (pitch angle)
ballYaw = (320.0 - centerX) * self.cameraYawRange / 640.0 # x (yaw angle)
dPitch = (cameraHeight - ballRadius) / np.tan(cameraDirection / 180 * np.pi + headPitch + ballPitch)
dYaw = dPitch / np.cos(ballYaw)
ballX = dYaw * np.cos(ballYaw + headYaw) + cameraX
ballY = dYaw * np.sin(ballYaw + headYaw) + cameraY
ballYaw = np.arctan2(ballY, ballX)
self.ballPosition["disX"] = ballX
if (standState == "standInit"):
ky = 42.513 * ballX ** 4 - 109.66 * ballX ** 3 + 104.2 * ballX ** 2 - 44.218 * ballX + 8.5526
# ky = 12.604*ballX**4 - 37.962*ballX**3 + 43.163*ballX**2 - 22.688*ballX + 6.0526
ballY = ky * ballY
ballYaw = np.arctan2(ballY, ballX)
self.ballPosition["disY"] = ballY
self.ballPosition["angle"] = ballYaw
def __updateBallPosition(self, standState): # test phase
"""
compute and update the ball position with the ball data in frame.
standState: "standInit" or "standUp".
"""
bottomCameraDirection = {"standInit": 49.2 / 180 * np.pi, "standUp": 39.7 / 180 * np.pi}
try:
cameraDirection = bottomCameraDirection[standState]
except KeyError:
print("Error! unknown standState, please check the value of stand state!")
else:
if self.ballData["radius"] == 0:
self.ballPosition = {"disX": 0, "disY": 0, "angle": 0}
else:
centerX = self.ballData["centerX"]
centerY = self.ballData["centerY"]
radius = self.ballData["radius"]
cameraPos = self.motionProxy.getPosition(self.cameraName, motion.FRAME_WORLD, True)
cameraX, cameraY, cameraHeight = cameraPos[:3]
headYaw, headPitch = self.motionProxy.getAngles("Head", True)
cameraPitch = headPitch + cameraDirection
imgCenterX = self.frameWidth / 2
imgCenterY = self.frameHeight / 2
centerX = self.ballData["centerX"]
centerY = self.ballData["centerY"]
imgPitch = (centerY - imgCenterY) / (self.frameHeight) * self.cameraPitchRange
imgYaw = (imgCenterX - centerX) / (self.frameWidth) * self.cameraYawRange
ballPitch = cameraPitch + imgPitch
# ballPitch = 38/180.0*3.14
ballYaw = imgYaw + headYaw
# ballYaw = 31/180.0*3.14
dist = (cameraHeight - self.ballRadius) / np.tan(ballPitch) + np.sqrt(cameraX ** 2 + cameraY ** 2)
# print("height = ", cameraHeight)
# print("cameraPitch = ", cameraPitch*180/3.14)
# print("imgYaw = ", imgYaw/3.14*180)
# print("headYaw = ", headYaw/3.14*180)
# print("ballYaw = ",ballYaw/3.14*180)
# print("ballPitch = ", ballPitch/3.14*180)
disX = dist * np.cos(ballYaw)
disY = dist * np.sin(ballYaw)
# print("disX = ", disX)
# print("disY = ", disY)
self.ballPosition["disX"] = disX
self.ballPosition["disY"] = disY
self.ballPosition["angle"] = ballYaw
def __writeFrame(self, saveDir="./ballData"):
"""
write current frame to specifid directory.
"""
if not os.path.exists(saveDir):
os.makedirs(saveDir)
saveName = str(int(time.time()))
saveImgPath = os.path.join(saveDir, saveName + ".jpg")
try:
cv2.imwrite(saveImgPath, self.frameArray)
except:
print("Error when saveing current frame!")
def __writeFramewithCircle(self, saveDir="./ballCircle"):
"""
write current frame to specifid directory.
"""
if not os.path.exists(saveDir):
os.makedirs(saveDir)
saveName = str(int(time.time()))
saveImgPath = os.path.join(saveDir, saveName + ".jpg")
try:
frameArray = self.frameArray.copy()
cv2.circle(frameArray, (self.ballData["centerX"], self.ballData["centerY"]),
self.ballData["radius"], (250, 150, 150), 2)
cv2.circle(frameArray, (self.ballData["centerX"], self.ballData["centerY"]),
2, (50, 250, 50), 3)
cv2.imwrite(saveImgPath, frameArray)
except:
print("Error when saveing current frame!")
def updateBallData(self, client="python_client", standState="standInit", color="red",
colorSpace="BGR", fitting=True, minHSV1=np.array([0, 43, 46]),
maxHSV1=np.array([10, 255, 255]), minHSV2=np.array([156, 43, 46]),
maxHSV2=np.array([180, 255, 255]), saveFrame=False, saveFrameBin=False):
"""
update the ball data with the frame get from the bottom camera.
Args:
standState: ("standInit", default), "standInit" or "standUp".
color: ("red", default) the color of ball to be detected.
colorSpace: "BGR", "HSV".
fittting: the method of localization.
minHSV1, maxHSV1, minHSV2, maxHSV2: only for HSV color space.
saveFrame: save current frame to disk or not (without ball information).
saveFrameBin: save the preprocessed frame in the class or not.
Return:
a dict with ball data. for example: {"centerX":0, "centerY":0, "radius":0}.
"""
stime = time.time()
self.updateFrame(client)
print("update Ball times: {}".format(time.time() - stime))
minDist = int(self.frameHeight / 30.0)
minRadius = 6
maxRadius = int(self.frameHeight / 10.0)
if colorSpace == "BGR":
grayFrame = self.__getChannelAndBlur(color)
else:
grayFrame = self.__binImageHSV(minHSV1, maxHSV1, minHSV2, maxHSV2)
if saveFrameBin:
self._frameBin = grayFrame.copy()
circles = self.__findCircles(grayFrame, minDist, minRadius, maxRadius)
circle = self.__selectCircle(circles)
# print("circle = ", circle.shape)
if circle.shape[0] == 0:
# print("no ball")
self.ballData = {"centerX": 0, "centerY": 0, "radius": 0}
self.ballPosition = {"disX": 0, "disY": 0, "angle": 0}
else:
circle = circle.reshape([-1, 3])
self.ballData = {"centerX": circle[0][0], "centerY": circle[0][1], "radius": circle[0][2]}
if fitting == True:
self.__updateBallPositionFitting(standState=standState)
else:
self.__updateBallPosition(standState=standState)
if self.writeFrame == True:
self.__writeFrame()
if self.writeFramewithCircle == True:
self.__writeFramewithCircle()
def getBallPosition(self):
"""
get ball position.
Return:
distance in x axis, distance in y axis and direction related to Nao.
"""
disX = self.ballPosition["disX"]
disY = self.ballPosition["disY"]
angle = self.ballPosition["angle"]
print("ball :", [disX, disY, angle])
return [disX, disY, angle]
def getBallInfoInImage(self):
"""
get ball information in image.
Return:
a list of centerX, centerY and radius of the red ball.
"""
centerX = self.ballData["centerX"]
centerY = self.ballData["centerY"]
radius = self.ballData["radius"]
return [centerX, centerY, radius]
def showBallPosition(self):
"""
show and save ball data in the current frame.
"""
if self.ballData["radius"] == 0:
# print("no ball found.")
print("ball postion = ", (self.ballPosition["disX"], self.ballPosition["disY"]))
cv2.imshow("ball position", self.frameArray)
else:
print("ballX = ", self.ballData["centerX"])
print("ballY = ", self.ballData["centerY"])
print("ball postion = ", (self.ballPosition["disX"], self.ballPosition["disY"]))
print("ball direction = ", self.ballPosition["angle"] * 180 / 3.14)
frameArray = self.frameArray.copy()
cv2.circle(frameArray, (self.ballData["centerX"], self.ballData["centerY"]),
self.ballData["radius"], (250, 150, 150), 2)
cv2.circle(frameArray, (self.ballData["centerX"], self.ballData["centerY"]),
2, (50, 250, 50), 3)
cv2.imshow("ball position", frameArray)
def sliderHSV(self, client):
"""
slider for ball detection in HSV color space.
Args:
client: client name.
"""
windowName = "slider for ball detection"
cv2.namedWindow(windowName)
cv2.createTrackbar("minS1", windowName, 43, 60, lambda x: None)
cv2.createTrackbar("minV1", windowName, 46, 65, lambda x: None)
cv2.createTrackbar("maxH1", windowName, 10, 20, lambda x: None)
cv2.createTrackbar("minH2", windowName, 156, 175, lambda x: None)
while 1:
time1 = time.time()
self.updateFrame(client)
minS1 = cv2.getTrackbarPos("minS1", windowName)
minV1 = cv2.getTrackbarPos("minV1", windowName)
maxH1 = cv2.getTrackbarPos("maxH1", windowName)
minH2 = cv2.getTrackbarPos("minH2", windowName)
minHSV1 = np.array([0, minS1, minV1])
maxHSV1 = np.array([maxH1, 255, 255])
minHSV2 = np.array([minH2, minS1, minV1])
maxHSV2 = np.array([180, 255, 255])
self.updateBallData(client, colorSpace="HSV", minHSV1=minHSV1,
maxHSV1=maxHSV1, minHSV2=minHSV2,
maxHSV2=maxHSV2, saveFrameBin=True, fitting=True)
cv2.imshow(windowName, self._frameBin)
self.showBallPosition()
print(time.time() - time1)
k = cv2.waitKey(10) & 0xFF
if k == 27:
break
cv2.destroyAllWindows()
class StickDetect(VisualBasis):
"""
derived from VisualBasics, used to detect the stict.
"""
def __init__(self, IP, PORT=9559, cameraId=vd.kTopCamera, resolution=vd.kVGA,
writeFrame=False, writeFramewithBox=False):
super(StickDetect, self).__init__(IP, PORT, cameraId, resolution)
self.boundRect = []
self.cropKeep = 1
self.stickAngle = 0.0 # rad
self.writeFrame = writeFrame
self.writeFramewithBox = writeFramewithBox
def __preprocess(self, minHSV, maxHSV, cropKeep, morphology):
"""
preprocess the current frame for stick detection.(binalization, crop etc.)
Args:
minHSV: the lower limit for binalization.
maxHSV: the upper limit for binalization.
cropKeep: crop ratio (>=0.5).
morphology: erosion and dilation.
Return:
preprocessed image for stick detection.
"""
self.cropKeep = cropKeep
frameArray = self.frameArray
height = self.frameHeight
width = self.frameWidth
try:
frameArray = frameArray[int((1 - cropKeep) * height):, :]
except IndexError:
print("error happened when crop the image!")
frameHSV = cv2.cvtColor(frameArray, cv2.COLOR_BGR2HSV)
frameBin = cv2.inRange(frameHSV, minHSV, maxHSV)
kernelErosion = np.ones((5, 5), np.uint8)
kernelDilation = np.ones((5, 5), np.uint8)
frameBin = cv2.erode(frameBin, kernelErosion, iterations=1)
frameBin = cv2.dilate(frameBin, kernelDilation, iterations=1)
frameBin = cv2.GaussianBlur(frameBin, (9, 9), 0)
# cv2.imshow("stick bin", frameBin)
# cv2.waitKey(20)
return frameBin
def __findStick(self, frameBin, minPerimeter, minArea):
"""
find the yellow stick in the preprocessed frame.
Args:
frameBin: preprocessed frame.
minPerimeter: minimum perimeter of detected stick.
minArea: minimum area of detected stick.
Return: detected stick marked with rectangle or [].
"""
rects = []
if cv2.__version__.split(".")[0] == "3": # for OpenCV >= 3.0.0
_, contours, _ = cv2.findContours(frameBin, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
else:
contours, _ = cv2.findContours(frameBin, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
if len(contours) == 0:
return rects
for contour in contours:
perimeter = cv2.arcLength(contour, True)
area = cv2.contourArea(contour)
if perimeter > minPerimeter and area > minArea:
x, y, w, h = cv2.boundingRect(contour)
rects.append([x, y, w, h])
if len(rects) == 0:
return rects
rects = [rect for rect in rects if (1.0 * rect[3] / rect[2]) > 0.8]
if len(rects) == 0:
return rects
rects = np.array(rects)
rect = rects[np.argmax(1.0 * (rects[:, -1]) / rects[:, -2]),]
rect[1] += int(self.frameHeight * (1 - self.cropKeep))
return rect
def __writeFrame(self, saveDir="./stickData"):
"""
write current frame to specifid directory.
"""
if not os.path.exists(saveDir):
os.makedirs(saveDir)
saveName = str(int(time.time()))
saveImgPath = os.path.join(saveDir, saveName + ".jpg")
try:
[x, y, w, h] = self.boundRect
frame = self.frameArray.copy()
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 255), 2)
cv2.imshow("stick position", frame)
cv2.imwrite(saveImgPath, self.frameArray)
except:
print("Error when saveing current frame!")
def __writeFramewithBox(self, saveDir="./stickData"):
"""
write current frame to specifid directory.
"""
if not os.path.exists(saveDir):
os.makedirs(saveDir)
saveName = str(int(time.time()))
saveImgPath = os.path.join(saveDir, saveName + ".jpg")
try:
cv2.imwrite(saveImgPath, self.frameArray)
except:
print("Error when saveing current frame!")
def updateStickData(self, client="test", minHSV=np.array([27, 55, 115]),
maxHSV=np.array([45, 255, 255]), cropKeep=0.75,
morphology=True, savePreprocessImg=False):
"""
update the yellow stick data from the specified camera.
Args:
client: client name
minHSV: the lower limit for binalization.
maxHSV: the upper limit for binalization.
cropKeep: crop ratio (>=0.5).
morphology: (True, default), erosion and dilation.
savePreprocessImg: save the preprocessed image or not.
"""
self.updateFrame(client)
minPerimeter = self.frameHeight / 8.0
minArea = self.frameHeight * self.frameWidth / 1000.0
frameBin = self.__preprocess(minHSV, maxHSV, cropKeep, morphology)
if savePreprocessImg:
self._frameBin = frameBin.copy()
rect = self.__findStick(frameBin, minPerimeter, minArea)
if rect == []:
self.boundRect = []
self.stickAngle = 0.0
else:
self.boundRect = rect
centerX = rect[0] + rect[2] / 2
width = self.frameWidth * 1.0
self.stickAngle = (width / 2 - centerX) / width * self.cameraYawRange
cameraPosition = self.motionProxy.getPosition("Head", 2, True)
cameraY = cameraPosition[5]
self.stickAngle += cameraY
if self.writeFrame == True:
self.__writeFrame()
if self.writeFramewithBox == True:
self.__writeFramewithBox()
def showStickPosition(self):
"""
show the stick position in the current frame.
"""
if self.boundRect == []:
# print("no stick detected.")
cv2.imshow("stick position", self.frameArray)
else:
[x, y, w, h] = self.boundRect
frame = self.frameArray.copy()
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 255), 2)
cv2.imshow("stick position", frame)
def slider(self, client):
"""
slider for stick detection in HSV color space.
Args:
client: client name.
"""
windowName = "slider for stick detection"
cv2.namedWindow(windowName)
cv2.createTrackbar("minH", windowName, 27, 45, lambda x: None)
cv2.createTrackbar("minS", windowName, 55, 75, lambda x: None)
cv2.createTrackbar("minV", windowName, 115, 150, lambda x: None)
cv2.createTrackbar("maxH", windowName, 45, 70, lambda x: None)
while 1:
self.updateFrame(client)
minH = cv2.getTrackbarPos("minH", windowName)
minS = cv2.getTrackbarPos("minS", windowName)
minV = cv2.getTrackbarPos("minV", windowName)
maxH = cv2.getTrackbarPos("maxH", windowName)
minHSV = np.array([minH, minS, minV])
maxHSV = np.array([maxH, 255, 255])
self.updateStickData(client, minHSV, maxHSV, savePreprocessImg=True)
cv2.imshow(windowName, self._frameBin)
self.showStickPosition()
k = cv2.waitKey(10) & 0xFF
if k == 27:
break
cv2.destroyAllWindows()
class LandMarkDetect(ConfigureNao):
"""
detect the landMark.
"""
def __init__(self, IP, PORT=9559, cameraId=vd.kTopCamera, landMarkSize=0.105):
super(LandMarkDetect, self).__init__(IP, PORT)
self.cameraId = cameraId
self.cameraName = "CameraTop" if cameraId == vd.kTopCamera else "CameraBottom"
self.landMarkSize = landMarkSize
self.disX = 0
self.disY = 0
self.dist = 0
self.yawAngle = 0
self.cameraProxy.setActiveCamera(self.cameraId)
def updateLandMarkData(self, client="landMark"):
"""
update landMark information
Args:
client: client name
Return:
None.
"""
if self.cameraProxy.getActiveCamera() != self.cameraId:
self.cameraProxy.setActiveCamera(self.cameraId)
time.sleep(1)
self.landMarkProxy.subscribe(client)
markData = self.memoryProxy.getData("LandmarkDetected")
self.cameraProxy.unsubscribe(client)
if (markData is None or len(markData) == 0):
self.disX = 0
self.disY = 0
self.dist = 0
self.yawAngle = 0
else:
wzCamera = markData[1][0][0][1]
wyCamera = markData[1][0][0][2]
angularSize = markData[1][0][0][3]
distCameraToLandmark = self.landMarkSize / (2 * math.tan(angularSize / 2))
transform = self.motionProxy.getTransform(self.cameraName, 2, True)
transformList = almath.vectorFloat(transform)
robotToCamera = almath.Transform(transformList)
cameraToLandmarkRotTrans = almath.Transform_from3DRotation(0, wyCamera, wzCamera)
cameraToLandmarkTranslationTrans = almath.Transform(distCameraToLandmark, 0, 0)
robotToLandmark = robotToCamera * \
cameraToLandmarkRotTrans * \
cameraToLandmarkTranslationTrans
self.disX = robotToLandmark.r1_c4
self.disY = robotToLandmark.r2_c4
self.dist = np.sqrt(self.disX ** 2 + self.disY ** 2)
self.yawAngle = math.atan2(self.disY, self.disX)
def getLandMarkData(self):
"""
get landMark information.
Return:
a list of disX, disY, dis, and yaw angle.
"""
return [self.disX, self.disY, self.dist, self.yawAngle]
def showLandMarkData(self):
"""
show landmark information detected.
"""
print("disX = ", self.disX)
print("disY = ", self.disY)
print("dis = ", self.dist)
print("yaw angle = ", self.yawAngle * 180.0 / np.pi)