-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathpythag.m
42 lines (37 loc) · 1.34 KB
/
pythag.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
function [xn,k] = pythag(x,y,d,noprnt)
%PYTHAG Pythagorean sum in variable precision arithmetic.
% p = PYTHAG(x,y,d) computes the Pythagorean sum
% sqrt(x^2+y^2) of the real numbers x and y correct to about d
% significant digits, using an iteration that avoids computing
% square roots. d defaults to 50.
% By default, the progress of the iteration is printed;
% the call PYTHAG(x,y,d,1) suppresses this.
% [x,k] = PYTHAG(x,y,d) returns also the number of
% iterations, k.
narginchk(2,4) % Check number of input arguments.
if nargin < 4, noprnt = 0; end
if nargin < 3, d = 50; end
d_old = digits;
% Work with slightly more accuracy than requested for final result.
digits(d+10)
x = abs(vpa(x)); y = abs(vpa(y));
xn = max(x,y); % Take max since xn increases to Pyth. sum.
yn = min(x,y);
k = 0;
x_change = 0;
while abs(x_change) < d
k = k +1;
yn2 = yn^2;
temp = yn2/(4*xn^2+yn2);
xnp1 = xn*(1 + 2*temp);
ynp1 = yn*temp;
x_change = double( log10(abs((xnp1-xn)/xnp1)) );
y_exp = double( log10(ynp1) );
if ~noprnt
fprintf('log(rel_change_x_n): %6.0f, log(y_n): %6.0f\n', ...
x_change, y_exp)
end
xn = xnp1; yn = ynp1;
end
xn = vpa(xn,d); % Return requested number of digits.
digits(d_old) % Restore original value.