-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path77.tex
31 lines (30 loc) · 856 Bytes
/
77.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
\def\no{77}
\def\theintegral{\(\int\sec^n{u}\;\dif{u}
\enspace=\enspace%
\tfrac{1}{n-1}\,\tan u\,\sec^{n-2}{u}
\,+\,
\tfrac{n-2}{n-1}\,\int\sec^{n-2}u\;\dif{u}
\)}
% \def\aroundarrows{\mspace{18mu}}
% \def\andsoarrow{\Rightarrow}
\begin{align*}
% \renewcommand{\baselinestretch}{2}
{I}_{\no}
=& \int\sec^n{u}\dif{u}
\parts
{ \sec^2u }{ \tan u }%
{ \sec^{n-2}u }{ (n-2)\sec^{n-3}{u}\sec{u}\tan{u}}\\
=& \tan u\,\sec^{n-2}u-(n-2)\int\sec^{n-2}\tan^2u\dif u\\
=& \tan u\,\sec^{n-2}u-(n-2)\int\sec^{n-2}(\sec^2u-1)\dif u\\
=& \tan u\,\sec^{n-2}u-(n-2)\left(
\int \sec^{n}u\dif u - \int\sec^{n-2}\dif u
\right)
\end{align*}
\begin{align*}
(1+(n-2))\int\sec^n{u}\dif{u}
=& \tan u\,\sec^{n-2}u
+(n-2)\int\sec^{n-2}\dif u \\
\int\sec^n{u}\dif{u}
=& \frac{1}{n-1}\tan u\,\sec^{n-2}u
+\frac{n-2}{n-1}\int\sec^{n-2}\dif u \\
\end{align*}