-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_estimation.py
424 lines (337 loc) · 17.7 KB
/
run_estimation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
from collections import OrderedDict
from copy import deepcopy, copy
import pprint
import time
import argparse
import sys
import kabuki
import os
import plots_utils as utils
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from plots_utils import select
from IPython import parallel
from IPython.parallel.client.asyncresult import AsyncResult
import estimate as est
#COLORS = {'HDDMsharedVar': 'Blue', 'HDDMTruncted': 'Brown', 'Quantiles_group': 'BurlyWood', 'Quantiles_subj': 'CadetBlue',
# 'SingleMAP': 'Chartreuse', 'SingleMAPOutliers': 'red'}
#PARAM_NAMES = {'a': 'threshold',
# 'v': 'drift-rate',
# 't': 'non-decision time',
# 'z': 'bias',
# 'st': 'non-decision time var.',
# 'sz': 'bias var.'}
PARAM_NAMES = {'a': 'a',
'v': 'v',
't': 't',
'z': 'z',
'st': 'st',
'sz': 'sz',
'sv': 'sv'}
def run_experiments(n_subjs=(12,), n_trials=(10, 40, 100), n_params=5, n_datasets=5, include=('v','t','a'),
estimators=None, view=None, depends_on = None, equal_seeds=True, run_type=None,
factor3_vals = None, action='run', single_runs_folder='.', subj_noise=None,
seed_data=1, seed_params=1):
if not isinstance(n_subjs, (tuple, list, np.ndarray)):
n_subjs = (n_subjs,)
if not isinstance(n_trials, (tuple, list, np.ndarray)):
n_trials = (n_trials,)
if depends_on is None:
depends_on = {}
#kwargs for initialize estimation
init = OrderedDict([('include', include), ('depends_on', depends_on)])
#kwargs for estimation
estimate = OrderedDict([('runs', 3)])
#include params
params = OrderedDict([('include', include)])
recover = est.multi_recovery_fixed_n_trials
estimator_dict = OrderedDict()
hddm_sampling_params = OrderedDict([('samples', 1500), ('burn', 500), ('map', False)])
optimizations_params = OrderedDict([('method', 'ML'), ('quantiles', (0.1, 0.3, 0.5, 0.7, 0.9)), ('n_runs', 50)])
if 'SingleMAP' in estimators:
estimator_dict['SingleMAP'] = OrderedDict([('estimator', est.EstimationSingleMAP), ('params', {'runs': 50})])
if 'SingleMAPoutliers' in estimators:
estimator_dict['SingleMAPoutliers'] = OrderedDict([('estimator', est.EstimationSingleMAPoutliers), ('params', {'runs': 50})])
if 'HDDMsharedVar' in estimators:
estimator_dict['HDDMsharedVar'] = OrderedDict([('estimator', est.EstimationHDDMsharedVar), ('params', hddm_sampling_params)])
if 'HDDMGamma' in estimators:
estimator_dict['HDDMGamma'] = OrderedDict([('estimator', est.EstimationHDDMGamma), ('params', hddm_sampling_params)])
if 'noninformHDDM' in estimators:
estimator_dict['noninformHDDM'] = OrderedDict([('estimator', est.EstimationNoninformHDDM), ('params', hddm_sampling_params)])
if 'HDDMOutliers' in estimators:
estimator_dict['HDDMOutliers'] = OrderedDict([('estimator', est.EstimationHDDMOutliers), ('params', hddm_sampling_params)])
if 'HDDMRegressor' in estimators:
estimator_dict['HDDMRegressor'] = OrderedDict([('estimator', est.EstimationHDDMRegressor), ('params', hddm_sampling_params)])
if 'HDDM2' in estimators:
estimator_dict['HDDM2'] = OrderedDict([('estimator', est.EstimationHDDM2), ('params', hddm_sampling_params)])
if 'SingleRegressor' in estimators:
estimator_dict['SingleRegressor'] = OrderedDict([('estimator', est.SingleRegressor), ('params', hddm_sampling_params)])
if 'HDDM2Single' in estimators:
estimator_dict['HDDM2Single'] = OrderedDict([('estimator', est.EstimationHDDM2Single), ('params', hddm_sampling_params)])
if 'HDDMTruncated' in estimators:
estimator_dict['HDDMTruncated'] = OrderedDict([('estimator', est.EstimationHDDMTruncated), ('params', hddm_sampling_params)])
if 'Quantiles_subj' in estimators:
opt_params = deepcopy(optimizations_params)
opt_params['method'] = 'chisquare'
estimator_dict['Quantiles_subj'] = OrderedDict([('estimator', est.EstimationSingleOptimization), ('params', opt_params)])
if 'ML' in estimators:
opt_params = deepcopy(optimizations_params)
opt_params['method'] = 'ML'
estimator_dict['ML'] = OrderedDict([('estimator', est.EstimationSingleOptimization), ('params', opt_params)])
if 'Quantiles_group' in estimators:
opt_params = deepcopy(optimizations_params)
opt_params['method'] = 'chisquare'
estimator_dict['Quantiles_group'] = OrderedDict([('estimator', est.EstimationGroupOptimization), ('params', opt_params)])
if 'MLRegressor' in estimators:
opt_params = deepcopy(optimizations_params)
opt_params['method'] = 'ML'
estimator_dict['MLRegressor'] = OrderedDict([('estimator', est.SingleRegOptimization), ('params', opt_params)])
n_subjs_results = {}
for cur_subjs in n_subjs:
n_trials_results = {}
for cur_trials in n_trials:
factor3_results = {}
for cur_value in factor3_vals:
#if regress experiments then we add an effect
if run_type == 'regress':
params['effect'] = cur_value
if run_type == 'priors':
n_conds = cur_value
else:
n_conds = 2
#create kw_dict
kw_dict = OrderedDict([('params', params), ('init', init), ('estimate', estimate), ('n_conds', n_conds)])
#exclude params
if run_type == 'regress':
exclude = set(['sv','st','sz','z', 'reg_outcomes'])
else:
exclude = set(['sv','st','sz','z']) - set(include)
#create kw_dict['data']
if run_type == 'outliers':
cur_outliers = cur_value
else:
cur_outliers = 0
n_outliers = int(cur_trials * cur_outliers)
n_fast_outliers = (n_outliers // 2)
n_slow_outliers = n_outliers - n_fast_outliers
data = OrderedDict([('subjs', cur_subjs), ('subj_noise', subj_noise), ('size', cur_trials - n_outliers),
('exclude_params', exclude)])
if run_type != 'regress':
data['n_fast_outliers'] = n_fast_outliers
data['n_slow_outliers'] = n_slow_outliers
#creat kw_dict
kw_dict['data'] = data
models_results = {}
for model_name, descr in estimator_dict.iteritems():
#create kw_dict
kw_dict_model = deepcopy(kw_dict)
kw_dict_model['estimate'] = descr['params']
#update it with regressor information if needed
if model_name in est.MODELS_WITH_REGRESSORS:
reg_func = lambda args, cols: args[0]*cols[:,0]+args[1]
if run_type == 'regress':
reg = {'func': reg_func, 'args':['v_slope','v_inter'], 'covariates': 'cov', 'outcome':'v'}
else:
reg = {'func': reg_func, 'args':['v_shift','v(c0)'], 'covariates': 'condition', 'outcome':'v'}
reg = OrderedDict(sorted(reg.items(), key=lambda t: t[0]))
kw_dict_model['init']['regressor'] = reg
kw_dict_model['init']['depends_on'] = {}
#run analysis
models_results[model_name] = recover(descr['estimator'], seed_data=seed_data, seed_params=seed_params, n_params=n_params,
n_datasets=n_datasets, kw_dict=kw_dict_model, view=view, run_type=run_type,
equal_seeds=equal_seeds, action=action, single_runs_folder=single_runs_folder)
factor3_results[cur_value] = models_results
#end of (for cur_outliers in factor3_vals)
n_trials_results[cur_trials] = factor3_results
#end of (for cur_trials in n_trials)
n_subjs_results[cur_subjs] = n_trials_results
#end of (for cur_subjs in n_subjs)
return n_subjs_results
def concat_dicts(d, names=()):
name = names.pop(0) if len(names) != 0 else None
if isinstance(d.values()[0], pd.DataFrame):
return pd.concat(d, names=[name])
elif isinstance(d.values()[0], AsyncResult):
d_get = {}
for k, v in d.iteritems():
d_get[k] = v.get()
return pd.concat(d_get, names=[name])
else:
sublevel_d = {}
for k, v in d.iteritems():
sublevel_d[k] = concat_dicts(v, names=copy(names))
return pd.concat(sublevel_d, names=[name])
def merge(data):
results = concat_dicts(data, names=['n_subjs', 'n_trials', 'p_outliers', 'estimation', 'param_seed', 'data_seed', 'param'])
return results
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Run HDDM experiments.', add_help=True)
parser.add_argument('--profile', action='store', dest='profile', type=str, default='mpi',
help='IPython environment to use.')
parser.add_argument('-r', action='store_true', dest='run', default=False,
help='Run simulations.')
parser.add_argument('-a', action='store_true', dest='analyze', default=False,
help='Analyze and plot results.')
parser.add_argument('-l', action='store_true', dest='load', default=False,
help='Load results from file.')
parser.add_argument('--parallel', action='store_true', dest='parallel', default=False,
help='Use IPython parallel.')
parser.add_argument('--trials', action='store_true', dest='trials', default=False,
help='Run trial experiment.')
parser.add_argument('--subjs', action='store_true', dest='subjs', default=False,
help='Run subject experiment.')
parser.add_argument('--recovery', action='store_true', dest='recovery', default=False,
help='Run recovery experiment.')
parser.add_argument('--outliers', action='store_true', dest='outliers', default=False,
help='Run outliers experiment')
parser.add_argument('--regress', action='store_true', dest='regress', default=False,
help='Run only regression estimations.')
parser.add_argument('--priors', action='store_true', dest='priors', default=False,
help='Run only priors experiment.')
parser.add_argument('--debug', action='store_true', dest='debug', default=False)
parser.add_argument('--savefig', action='store_true', dest='savefig', default=False)
parser.add_argument('--action', action='store', dest='action', default='run',
help='Which action to do: run/collect/delete')
parser.add_argument('--folder', action='store', dest='folder', default='current',
help='Which folder are the simulations going to be saved to/loaded from')
result = parser.parse_args()
run_trials, run_subjs, run_recovery, run_outliers = result.trials, result.subjs, result.recovery, result.outliers
run_priors = result.priors
run_regress = result.regress
savefig = result.savefig
action = result.action
folder = result.folder
if run_regress:
run_type = 'regress'
elif run_trials:
run_type = 'trials'
elif run_subjs:
run_type = 'subjs'
elif run_outliers:
run_type = 'outliers'
elif run_recovery:
run_type = 'recovery'
elif run_priors:
run_type = 'priors'
else:
raise ValueError("run_type was not found")
main_folder = os.path.join('simulations',run_type, folder)
single_runs_folder = os.path.join(main_folder, 'single_runs')
summary_folder = os.path.join(main_folder, 'summary')
if result.debug:
fname = os.path.join(summary_folder, run_type + '_debug' + '.dat')
else:
fname = os.path.join(summary_folder, run_type + '.dat')
if result.parallel:
c = parallel.Client(profile=result.profile)
view = c.load_balanced_view()
else:
view = None
#load arguments
sys.path.insert(0, main_folder)
try:
del sys.modules['args']
except KeyError:
pass
import args
exp_kwargs = args.args()
#run
if result.run:
#run experiment
pprint.pprint(exp_kwargs)
exp = run_experiments(view=view, action=action, single_runs_folder=single_runs_folder,
**exp_kwargs)
#collect data
if action == 'collect':
data = merge(exp)
if not run_regress:
estimators=('HDDM2Single', 'Quantiles_subj', 'ML')
data = pd.DataFrame(data.values, index=data.index, columns=data.columns)
data = est.add_group_stat_to_SingleOptimation(data, np.mean, estimators=estimators)
data = est.add_var_to_SingleOptimation(data, estimators=estimators)
data['err'] = np.asarray((data['estimate'] - data['truth']), dtype=np.float32)
data['abserr'] = np.abs(data['err'])
data.save(fname)
if result.load:
data = pd.load(fname)
data.index.names[-1] = 'param'
data['estimate'] = np.float64(data['estimate'])
try:
bad = data[(data.estimate < 1e-5) & (data.estimate > 0) & (data['std'] < 1e-10)]
print "Found %d problematic experiments" % len(bad)
print len(data)
for i in bad.index:
print i
t_bad = data.select(lambda x: x[:-1] == i[:-1]).index
data = data.drop(labels=t_bad)
print len(data)
except KeyError:
print "cound not run problems detection"
if result.analyze:
if run_subjs or run_trials:
# idx = ~np.isnan(data['50q'])
# data['estimate'][idx] = data['50q'][idx]
# include = ['v','a']
params = set(['a','v','t']).union(args.args()['include'])
depends_on= {'v': ['c0', 'c1']}
# stat = np.mean
stat = utils.trimmed_mean
#create figname
figname = stat.__name__
if run_subjs:
plot_type = 'subjs'
else:
plot_type = 'trials'
t_data = select(data, params, depends_on=depends_on, subj=True, estimators=['HDDM2','ML'])
utils.plot_errors(t_data, stat=utils.trimmed_2side_mean, plot_type=plot_type, savefig=savefig,
col='abserr', main='HDDM2', other='ML')
estimators = ['HDDM2', 'HDDM2Single', 'Quantiles_subj', 'ML']
utils.plot_exp(select(data, params, depends_on=depends_on, subj=True, estimators=estimators),
stat=stat, plot_type=plot_type,
figname='single_' + figname, savefig=savefig)
estimators += ['Quantiles_group']
utils.plot_exp(select(data, params, depends_on=depends_on, subj=False, estimators=estimators),
stat=stat, plot_type=plot_type,
figname='group_' + figname, savefig=savefig)
utils.likelihood_of_detection(data, plot_type=plot_type, savefig=savefig)
var_params = ['v_var', 'a_var', 't_var']
stat = utils.trimmed_mean
utils.plot_exp(select(data, var_params, depends_on=depends_on, subj=False, estimators=estimators),
stat=stat, plot_type=plot_type, col='err',
figname='variance_err_' + stat.__name__, savefig=savefig)
if run_priors:
# idx = ~np.isnan(data['50q'])
# data['estimate'][idx] = data['50q'][idx]
stat=utils.upper_trimmed_mean
estimators = ['HDDMGamma', 'ML', 'Quantiles_subj']
include = ['a','v','t','z']
# include = ['sz','st', 'sv']
#create figname
figname = stat.__name__
for i in [2, 3]:
depends_on= {'v': ['c0', 'c1', 'c2'][:i]}
selected_data = select(data, include, depends_on=depends_on, subj=False, estimators=estimators)
utils.plot_exp(selected_data.xs(i, level='p_outliers'), stat=stat, plot_type=run_type,
figname='_' + figname, savefig=savefig)
if run_regress:
utils.likelihood_of_detection(data, plot_type='regress', savefig=savefig)
if run_recovery:
# one_vs_others(select(recovery_data, include, subj=False), main_estimator='HDDMTruncated', tag='group'+str(include), save=False)
utils.plot_recovery_exp(select(data, include, subj=True), tag='subj'+str(include))
utils.plot_recovery_exp(select(data, include, subj=False), tag='group'+str(include), gridsize=50)
if run_outliers:
depends_on= {'v': ['c0', 'c1', 'c2', 'c3']}
stat=np.median
#create figname
figname = ''
if result.full:
figname += 'full'
else:
figname += 'simple'
figname += ('_' + stat.__name__)
utils.plot_exp(select(data, include, depends_on=depends_on, subj=True) , stat=stat, plot_type='subjs', figname='single_outliers_' + figname, savefig=savefig)
utils.plot_exp(select(data, include, depends_on=depends_on, subj=False), stat=stat, plot_type='subjs', figname='group_outliers_' + figname, savefig=savefig)
# one_vs_others(select(outliers_data, include, depends_on={},subj=True), main_estimator='SingleMAPoutliers', tag='subj'+str(include), save=savefig)
plt.show()
sys.exit(0)