-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmy_hddm_regression.py
168 lines (134 loc) · 6.82 KB
/
my_hddm_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
from copy import deepcopy
import numpy as np
from scipy import stats
import pymc as pm
import kabuki.step_methods as steps
import hddm
from my_hddm import HDDMGamma
import kabuki
from kabuki import Knode
from kabuki.distributions import scipy_stochastic
def generate_wfpt_reg_stochastic_class(wiener_params=None, sampling_method='cdf', cdf_range=(-5,5), sampling_dt=1e-4):
#set wiener_params
if wiener_params is None:
wiener_params = {'err': 1e-4, 'n_st':2, 'n_sz':2,
'use_adaptive':1,
'simps_err':1e-3,
'w_outlier': 0.1}
wp = wiener_params
def wiener_multi_like(value, v, sv, a, z, sz, t, st, reg_outcomes, p_outlier=0):
"""Log-likelihood for the full DDM using the interpolation method"""
return hddm.wfpt.wiener_like_multi(value, v, sv, a, z, sz, t, st, .001, reg_outcomes, p_outlier=p_outlier)
def random(v, sv, a, z, sz, t, st, reg_outcomes, p_outlier, size=None):
param_dict = {'v':v, 'z':z, 't':t, 'a':a, 'sz':sz, 'sv':sv, 'st':st}
sampled_rts = np.empty(size)
for i_sample in xrange(len(sampled_rts)):
#get current params
for p in reg_outcomes:
param_dict[p] = locals()[p][i_sample]
#sample
sampled_rts[i_sample] = hddm.generate.gen_rts(param_dict, method=sampling_method,
samples=1, dt=sampling_dt)
return sampled_rts
return pm.stochastic_from_dist('wfpt_reg', wiener_multi_like, random=random)
wfpt_reg_like = generate_wfpt_reg_stochastic_class(sampling_method='drift')
################################################################################################
class KnodeRegress(kabuki.hierarchical.Knode):
def create_node(self, name, kwargs, data):
reg = kwargs['regressor']
# order parents according to user-supplied args
args = []
for arg in reg['args']:
for parent_name, parent in kwargs['parents'].iteritems():
if parent_name.startswith(arg):
args.append(parent)
parents = {'args': args, 'cols': data[reg['covariates']].values}
return self.pymc_node(reg['func'], kwargs['doc'], name, parents=parents)
class HDDMRegressor(HDDMGamma):
"""HDDMRegressor allows estimation of trial-by-trial influences of
a covariate (e.g. a brain measure like fMRI) onto DDM parameters.
For example, if your prediction is that activity of a particular
brain area has a linear correlation with drift-rate, you could
specify the following regression model (make sure you have a column
with the brain activity in your data, in our example we name this
column 'BOLD'):
::
# Define regression function (linear in this case)
reg_func = lambda args, cols: args[0] + args[1]*cols[:,0]
# Define regression descriptor
# regression function to use (func, defined above)
# args: parameter names (passed to reg_func; v_slope->args[0],
# v_inter->args[1])
# covariates: data column to use as the covariate
# (in this example, expects a column named
# BOLD in the data)
# outcome: DDM parameter that will be replaced by trial-by-trial
# regressor values (drift-rate v in this case)
reg = {'func': reg_func,
'args': ['v_inter','v_slope'],
'covariates': 'BOLD',
'outcome': 'v'}
# construct regression model. Second argument must be the
# regression descriptor. This model will have new parameters defined
# in args above, these can be used in depends_on like any other
# parameter.
m = hddm.HDDMRegressor(data, reg, depends_on={'v_slope':'trial_type'})
"""
def __init__(self, data, regressor=None, **kwargs):
"""Hierarchical Drift Diffusion Model with regressors
"""
#create self.regressor and self.reg_outcome
regressor = deepcopy(regressor)
if isinstance(regressor, dict):
regressor = [regressor]
self.reg_outcomes = set() # holds all the parameters that are going to modeled as outcome
for reg in regressor:
if isinstance(reg['args'], str):
reg['args'] = [reg['args']]
if isinstance(reg['covariates'], str):
reg['covariates'] = [reg['covariates']]
self.reg_outcomes.add(reg['outcome'])
self.regressor = regressor
#set wfpt_reg
self.wfpt_reg_class = deepcopy(wfpt_reg_like)
super(HDDMRegressor, self).__init__(data, **kwargs)
def __getstate__(self):
d = super(HDDMRegressor, self).__getstate__()
del d['wfpt_reg_class']
print 'WARNING: The regression function can not be saved. Still saving but the loaded model will not be functional!'
for reg in d['regressor']:
del reg['func']
return d
def __setstate__(self, d):
d['wfpt_reg_class'] = deepcopy(wfpt_reg_like)
for reg in d['regressor']:
reg['func'] = lambda args, cols: cols[:,0]
print "WARNING: Can not load regression function. Replacing with a dummy function so do not try to sample from this model."
super(HDDMRegressor, self).__setstate__(d)
def _create_wfpt_knode(self, knodes):
wfpt_parents = self._create_wfpt_parents_dict(knodes)
return Knode(self.wfpt_reg_class, 'wfpt', observed=True,
col_name='rt', reg_outcomes=self.reg_outcomes, **wfpt_parents)
def _create_stochastic_knodes(self, include):
# Create all stochastic knodes except for the ones that we want to replace
# with regressors.
knodes = super(HDDMRegressor, self)._create_stochastic_knodes(include.difference(self.reg_outcomes))
#create regressor params
for i_reg, reg in enumerate(self.regressor):
reg_parents = {}
for arg in reg['args']:
reg_family = self.create_family_normal(arg, value=0)
reg_parents[arg] = reg_family['%s_bottom' % arg]
if reg not in self.group_only_nodes:
reg_family['%s_subj_reg' % arg] = reg_family.pop('%s_bottom' % arg)
knodes.update(reg_family)
reg_knode = KnodeRegress(pm.Deterministic, "%s_reg" % reg['outcome'],
regressor=reg,
col_name=reg['covariates'],
subj=self.is_group_model,
plot=False,
trace=False,
hidden=True,
**reg_parents)
knodes['%s_bottom' % reg['outcome']] = reg_knode
return knodes