diff --git a/automatminer/presets.py b/automatminer/presets.py index a57a3122..3d84313f 100644 --- a/automatminer/presets.py +++ b/automatminer/presets.py @@ -10,7 +10,7 @@ from automatminer.featurization import AutoFeaturizer from automatminer.preprocessing import DataCleaner, FeatureReducer from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor -from xgboost import XGBClassifier, XGBRegressor +# from xgboost import XGBClassifier, XGBRegressor def get_preset_config(preset: str = "express", **powerups) -> dict: @@ -85,11 +85,11 @@ def get_preset_config(preset: str = "express", **powerups) -> dict: "cleaner": DataCleaner(), } elif preset == "express_single": - xgb_kwargs = {"n_estimators": 300, "max_depth": 3, "n_jobs": n_jobs_kwargs} + rf_args = {"n_estimators": 500, "max_depth": 5, "n_jobs": n_jobs_kwargs} config = { "learner": SinglePipelineAdaptor( - regressor=XGBRegressor(**xgb_kwargs), - classifier=XGBClassifier(**xgb_kwargs), + regressor=RandomForestRegressor(**rf_args), + classifier=RandomForestClassifier(**rf_args), ), "reducer": FeatureReducer(reducers=("corr",)), "autofeaturizer": AutoFeaturizer( diff --git a/requirements.txt b/requirements.txt index 42cb3e00..3c1198a6 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,7 +1,6 @@ # Direct requirements of this project alone matminer==0.6.2 pymatgen==2020.01.28 -xgboost==0.80 tpot==0.11.0 skrebate==0.6 pyyaml==5.1.2